Impact of bacterial endotoxin on the structure of DMPC membranes.

Biochim Biophys Acta

Institute of Physical Chemistry, Cenide, University of Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany. Electronic address:

Published: October 2015

Bacterial lipopolysaccharides are believed to have a toxic effect on human cell membranes. In this study, the influence of a lipopolysaccharide (LPS) from Escherichia coli on the structure, the dynamics and the mechanical strength of phospholipid membranes are monitored by nuclear magnetic resonance spectroscopy (NMR) and by atomic force microscopy (AFM). Model membranes are formed from 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and are either prepared as multilamellar bulk samples or multilamellar vesicles. Field gradient NMR data directly prove the rapid integration of LPS into DMPC membranes. Solid state NMR experiments primarily detect decreasing molecular order parameters with increasing LPS content. This is accompanied by a mechanical softening of the membrane bilayers as is shown by AFM indentation measurements. Altogether, the data prove that lipopolysaccharide molecules quickly insert into phospholipid bilayers, increase membrane fluctuation amplitudes and significantly weaken their mechanical stiffness.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2015.06.008DOI Listing

Publication Analysis

Top Keywords

dmpc membranes
8
membranes
5
impact bacterial
4
bacterial endotoxin
4
endotoxin structure
4
structure dmpc
4
membranes bacterial
4
bacterial lipopolysaccharides
4
lipopolysaccharides believed
4
believed toxic
4

Similar Publications

Flexible Tail of Antimicrobial Peptide PGLa Facilitates Water Pore Formation in Membranes.

J Phys Chem B

January 2025

Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, State Key Laboratory of Medicinal Chemical, Biology College of Chemistry, Nankai University, Tianjin 300071, China.

PGLa, an antimicrobial peptide (AMP), primarily exerts its antibacterial effects by disrupting bacterial cell membrane integrity. Previous theoretical studies mainly focused on the binding mechanism of PGLa with membranes, while the mechanism of water pore formation induced by PGLa peptides, especially the role of structural flexibility in the process, remains unclear. In this study, using all-atom simulations, we investigated the entire process of membrane deformation caused by the interaction of PGLa with an anionic cell membrane composed of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylglycerol (DMPG).

View Article and Find Full Text PDF

Exploring the Interaction of 3-Hydroxy-4-pyridinone Chelators with Liposome Membrane Models: Insights from DSC and EPR Analysis.

Molecules

December 2024

REQUIMTE, LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.

In this study, we synthesized a series of 3-hydroxy-4-pyridinone (3,4-HPO) chelators with varying lipophilicity by modifying the length of their alkyl chains. To investigate their interaction with lipid membranes, we employed differential scanning calorimetry (DSC) and electron paramagnetic resonance (EPR) spectroscopy using dimyristoylphosphatidylcholine (DMPC) and palmitoyloleoylphosphatidylcholine (POPC) liposomes as membrane model systems. DSC experiments on DMPC liposomes revealed that hexyl-substituted chelators significantly altered the thermotropic phase behavior of the lipid bilayer, indicating their potential as membrane property modulators.

View Article and Find Full Text PDF

Effect of Monosaccharides Including Rare Sugars on the Bilayer Phase Behavior of Dimyristoylphosphatidylcholine.

Membranes (Basel)

December 2024

Department of Bioengineering, Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minamijosanjima-cho, Tokushima 770-8513, Japan.

We observed bilayer phase transitions of dimyristoylphosphatidylcholine (DMPC) in aqueous solutions of four kinds of monosaccharides, namely, D-glucose, D-fructose, D-allose and D-psicose, using differential scanning calorimetry (DSC). D-allose (C3-epimer of D-glucose) and D-psicose (C3-epimer of D-fructose) are rare sugars. We performed DSC measurements using two types of sugar-containing sample dispersions of the DMPC vesicles: one is a normal sample dispersion with no concentration asymmetry between the inside and outside of the vesicles and the other is an unusual sample dispersion with a concentration asymmetry.

View Article and Find Full Text PDF

Dynamic properties of isotropic DMPC/DHPC bicelles: Insights from solution NMR and MD simulations.

Biochem Biophys Res Commun

January 2025

Graduate School of Chemical Sciences and Engineering, Hokkaido University, N13, W8, Sapporo, 060-8628, Japan; Department of Chemistry, Faculty of Science, Hokkaido University, N8, W5, Sapporo, 060-0810, Japan. Electronic address:

Bicelles, an artificial disk-shaped lipid bilayer, are commonly used for the structural and functional characterization of membrane-bound proteins in an environment similar to that in intracellular membranes. Because the dynamics of the lipids that constitute bicelles exert a significant impact on the structure and function of the inserted proteins, we investigated the mobility of lipid molecules in bicelles composed of DMPC (14:0 PC) and DHPC (06:0 PC) using solution NMR and MD calculations. C R relaxation experiments for the acyl groups demonstrated that increasing bicelle sizes limit the rotational diffusion of acyl chain H-C bonds in DMPC.

View Article and Find Full Text PDF

Understanding crystallization behavior is integral to the design of pharmaceutical compounds for which the pharmacological properties depend on the crystal forms achieved. Very often, these crystals are based on hydrophobic molecules. One method for delivering crystal-forming hydrophobic drugs is by means of lipid nanoparticle carriers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!