We investigated the compartmentation of the catabolism of dodecanedioate (DODA), azelate, and glutarate in perfused rat livers, using a combination of metabolomics and mass isotopomer analyses. Livers were perfused with recirculating or nonrecirculating buffer containing one fully (13)C-labeled dicarboxylate. Information on the peroxisomal versus mitochondrial catabolism was gathered from the labeling patterns of acetyl-CoA proxies, i.e. total acetyl-CoA, the acetyl moiety of citrate, C-1 + 2 of β-hydroxybutyrate, malonyl-CoA, and acetylcarnitine. Additional information was obtained from the labeling patterns of citric acid cycle intermediates and related compounds. The data characterize the partial oxidation of DODA and azelate in peroxisomes, with terminal oxidation in mitochondria. We did not find evidence of peroxisomal oxidation of glutarate. Unexpectedly, DODA contributes a substantial fraction to anaplerosis of the citric acid cycle. This opens the possibility to use water-soluble DODA in nutritional or pharmacological anaplerotic therapy when other anaplerotic substrates are impractical or contraindicated, e.g. in propionic acidemia and methylmalonic acidemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4513124PMC
http://dx.doi.org/10.1074/jbc.M115.651737DOI Listing

Publication Analysis

Top Keywords

mass isotopomer
8
doda azelate
8
labeling patterns
8
citric acid
8
acid cycle
8
compartmentation metabolism
4
metabolism c12-
4
c12- c9-
4
c9- c5-n-dicarboxylates
4
c5-n-dicarboxylates rat
4

Similar Publications

RIBULOSE-1,5-BISPHOSPHATE CARBOXYLASE/OXYGENASE (RUBISCO) is the most abundant enzyme and CO2 bio-sequestration system on Earth. Its in vivo activity is usually determined by 14CO2 incorporation into 3-phosphoglycerate (3PGA). However, the radiometric analysis of 3PGA does not distinguish carbon positions.

View Article and Find Full Text PDF

Background: Metabolic labeling with heavy water (DO) followed by LC-MS has become a powerful tool for studying protein turnover . Developing a quantitative method to measure partially labeled low-abundance proteins poses many challenges because heavy isotopomers of peptides, especially their changes through deuterium labeling, are difficult to detect.

Methods: A workflow that coupled immunocapture and LC-high-resolution MS to determine the synthesis rate of HSD17β13 protein in mouse liver was presented.

View Article and Find Full Text PDF

Pseudomonas sp. LFM046 produces polyhydroxyalkanoates of medium-chain length. When carbohydrates are used, only monomers of even-length chains (3HA) are generated.

View Article and Find Full Text PDF

In this study, the effects of chlorine substitution on the valence orbitals and electronic states of 3-chloropyridine (3-CP) were investigated utilizing high-resolution vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy and computational methods. High-quality vibrational spectra were obtained from the VUV-MATI spectra of 3-CP isotopomers (35Cl and 37Cl), revealing high-quality vibrational spectra for the lowest cationic states. The adiabatic ionization energies (AIEs) of these isotopomers were accurately determined, providing detailed information about the electronic structure and ionization dynamics.

View Article and Find Full Text PDF

Here, we report the results of an IR spectroscopy study on heteroclusters of HS and HO and several of their isotopomers using mass-selective IR spectroscopy in superfluid helium nanodroplets in the range of 2560-2800 cm. Based on DFT calculations on the B3LYP-D3/6-311++G(d,p) level of theory, we were able to assign the experimentally observed O-D stretching bands to heterodimer and heterotrimer clusters. Since no bands of the S-H-bound conformer HSH···OH could be observed, we were able to determine the O-H-bound conformer HOH···SH to be the global minimum structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!