A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cationic polymer mediated bacterial clustering: Cell-adhesive properties of homo- and copolymers. | LitMetric

Cationic polymer mediated bacterial clustering: Cell-adhesive properties of homo- and copolymers.

Eur J Pharm Biopharm

School of Pharmacy, The University of Nottingham, University Park, Nottingham NG7 2RD, UK. Electronic address:

Published: September 2015

New anti-infective materials are needed urgently as alternatives to conventional biocides. It has recently been established that polymer materials designed to bind to the surface of bacteria can induce the formation of cell clusters which enhance the expression of quorum sensing controlled phenotypes. These materials are relevant for anti-infective strategies as they have the potential to inhibit adhesion while at the same time modulating Quorum Sensing (QS) controlled virulence. Here we carefully evaluate the role that charge and catechol moieties in these polymers play on the binding. We investigate the ability of the cationic polymers poly(N-[3-(dimethylamino)propyl] methacrylamide) (pDMAPMAm, P1), poly(N-dopamine methacrylamide-co-N-[3-(dimethylamino)propyl] methacrylamide) (pDMAm-co-pDMAPMAm, P2) and p(3,4-dihydroxy-l-phenylalanine methacrylamide), p(l-DMAm, P3) to cluster a range of bacteria, such as Staphylococcus aureus (Gram-positive), Vibrio harveyi, Escherichia coli and Pseudomonas aeruginosa (Gram-negative) under conditions of varying pH (6, 7 and 8) and polymer concentration (0.1 and 0.5mg/mL). We identify that clustering ability is strongly dependent on the balance between charge and hydrophobicity. Moreover, our results suggest that catechol moieties have a positive effect on adhesive properties, but only in the presence of cationic residues such as for P2. Overall, our results highlight the subtle interplay between dynamic natural surfaces and synthetic materials, as well as the need to consider synergistic structure-property relationship when designing antimicrobial polymers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2015.05.026DOI Listing

Publication Analysis

Top Keywords

quorum sensing
8
sensing controlled
8
catechol moieties
8
cationic polymer
4
polymer mediated
4
mediated bacterial
4
bacterial clustering
4
clustering cell-adhesive
4
cell-adhesive properties
4
properties homo-
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!