We report on the synthesis of novel pH- and electro-responsive polyelectrolyte brushes from a gold substrate by direct one-step nitroxide-mediated polymerization of acrylic acid (AA) or copolymerization of AA and styrene (S). In the latter case, amphiphilic brushes of block-gradient copolymers PAA-b-(PAA-grad-PS) comprising one PAA block and one block with the gradient sequence of AA and S were obtained. The block-gradient copolymers are initiated from the surface by the start of the PAA block. The brushes were characterized by XPS and ellipsometry. (1)H NMR confirmed the gradient sequence of the PAA-grad-PS copolymer block. The pH- and electro-responsive properties of the brushes were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) in combination with electrochemistry. This method provides evidence of swelling of the PAA brushes proportional to the contour length of the chains at elevated pH, whereas the response functions of the block-gradient copolymers are more complex and point to intermolecular aggregation in the brush at low pH. Monitoring of the changes in resonance frequency and dissipation of the QCM-D also demonstrates that application of negative voltage to the substrate leads to swelling of the brush; application of a positive voltage provokes only a transient collapse of the brush in proportion to the applied voltage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5b01993DOI Listing

Publication Analysis

Top Keywords

ph- electro-responsive
12
block-gradient copolymers
12
electro-responsive properties
8
brushes studied
8
studied quartz
8
quartz crystal
8
crystal microbalance
8
microbalance dissipation
8
dissipation monitoring
8
paa block
8

Similar Publications

Bioelectrocatalytic carbon dioxide reduction by an engineered formate dehydrogenase from Thermoanaerobacter kivui.

Nat Commun

November 2024

Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 west 7th Avenue, Tianjin Airport Economic Area, Tianjin, China.

Electrocatalytic carbon dioxide (CO) reduction by CO reductases is a promising approach for biomanufacturing. Among all known biological or chemical catalysts, hydrogen-dependent carbon dioxide reductase from Thermoanaerobacter kivui (TkHDCR) possesses the highest activity toward CO reduction. Herein, we engineer TkHDCR to generate an electro-responsive carbon dioxide reductase considering the safety and convenience.

View Article and Find Full Text PDF

Research Progress and Emerging Directions in Stimulus Electro-Responsive Polymer Materials.

Materials (Basel)

August 2024

Key Laboratory of Cluster Science, Ministry of Education of China, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Stimulus electro-responsive polymer materials can reversibly change their physical or chemical properties under various external stimuli such as temperature, light, force, humidity, pH, and magnetic fields. This review introduces typical conventional stimulus electro-responsive polymer materials and extensively explores novel directions in the field, including multi-stimuli electro-responsive polymer materials and humidity electro-responsive polymer materials pioneered by our research group. Despite significant advancements in stimulus electro-responsive polymer materials, ongoing research focuses on enhancing their efficiency, lifespan, and production costs.

View Article and Find Full Text PDF

The electro-responsive nanoliposome as an on-demand drug delivery platform for epilepsy treatment.

Int J Pharm

October 2024

Department of Nanobiotechnology, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran; Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran. Electronic address:

Nano-based drug delivery systems are regarded as a promising tool for efficient epilepsy treatment and seizure medication with the least general side effects and socioeconomic challenges. In the current study, we have designed a smart nanoscale drug delivery platform and applied it in the kindling model of epilepsy that is triggered rapidly by epileptic discharges and releases anticonvulsant drugs in situ, such as carbamazepine (CBZ). The CBZ-loaded electroactive ferrocene nanoliposomes had an average diameter of 100.

View Article and Find Full Text PDF

Dual electro-/pH-responsive nanoparticle/hydrogel system for controlled delivery of anticancer peptide.

Biomater Adv

September 2024

Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany 10-14, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain. Electronic address:

An electro-chemo-responsive carrier has been engineered for the controlled release of a highly hydrophilic anticancer peptide, CR(NMe)EKA (Cys-Arg- N-methyl-Glu-Lys-Ala). Remotely controlled on demand release of CR(NMe)EKA, loaded in electro-responsive poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles, has been achieved by applying electrical stimuli consisting of constant positive (+0.50 V) or negative voltages (-0.

View Article and Find Full Text PDF

Soft robotic patterning of liquids.

Sci Rep

September 2023

Department of Industrial Engineering, University of Florence, Via di Santa Marta 3, 50139, Florence, Italy.

Patterning of two or more liquids, either homogeneous in each phase or mixed with particles (including biological matter, such as cells and proteins), by controlling their flow dynamics, is relevant to several applications. Examples include dynamic spatial confinement of liquids in microfluidic systems (such as lab-on-a-chip and organ-on-a-chip devices) or structuring of polymers to modulate various properties (such as strength, conductivity, transparency and surface finishing). State-of-the-art strategies use various technologies, including positioners, shakers and acoustic actuators, which often combine limited versatility of mixing with significant inefficiency, energy consumption, and noise, as well as tendency to increase the temperature of the liquids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!