A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Combined mineralocorticoid and glucocorticoid deficiency is caused by a novel founder nicotinamide nucleotide transhydrogenase mutation that alters mitochondrial morphology and increases oxidative stress. | LitMetric

Background: Familial glucocorticoid deficiency (FGD) reflects specific failure of adrenocortical glucocorticoid production in response to adrenocorticotropic hormone (ACTH). Most cases are caused by mutations encoding ACTH-receptor components (MC2R, MRAP) or the general steroidogenesis protein (StAR). Recently, nicotinamide nucleotide transhydrogenase (NNT) mutations were found to cause FGD through a postulated mechanism resulting from decreased detoxification of reactive oxygen species (ROS) in adrenocortical cells.

Methods And Results: In a consanguineous Palestinian family with combined mineralocorticoid and glucocorticoid deficiency, whole-exome sequencing revealed a novel homozygous NNT_c.598 G>A, p.G200S, mutation. Another affected, unrelated Palestinian child was also homozygous for NNT_p.G200S. Haplotype analysis showed this mutation is ancestral; carrier frequency in ethnically matched controls is 1/200. Assessment of patient fibroblasts for ROS production, ATP content and mitochondrial morphology showed that biallelic NNT mutations result in increased levels of ROS, lower ATP content and morphological mitochondrial defects.

Conclusions: This report of a novel NNT mutation, p.G200S, expands the phenotype of NNT mutations to include mineralocorticoid deficiency. We provide the first patient-based evidence that NNT mutations can cause oxidative stress and both phenotypic and functional mitochondrial defects. These results directly demonstrate the importance of NNT to mitochondrial function in the setting of adrenocortical insufficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2015-103078DOI Listing

Publication Analysis

Top Keywords

nnt mutations
16
glucocorticoid deficiency
12
combined mineralocorticoid
8
mineralocorticoid glucocorticoid
8
nicotinamide nucleotide
8
nucleotide transhydrogenase
8
mitochondrial morphology
8
oxidative stress
8
atp content
8
nnt
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!