Benefits from additives and xylanase during enzymatic hydrolysis of bamboo shoot and mature bamboo.

Bioresour Technol

College of Forestry, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China. Electronic address:

Published: September 2015

Effects of additives (BSA, PEG 6000, and Tween 80) on enzymatic hydrolysis of bamboo shoot and mature bamboo fractions (bamboo green, bamboo timber, bamboo yellow, bamboo node, and bamboo branches) by cellulases and/or xylanase were evaluated. The addition of additives was comparable to the increase of cellulase loadings in the conversion of cellulose and xylan in bamboo fractions. Supplementation of xylanase (1 mg/g DM) with cellulases (10 FPU/g DM) in the hydrolysis of bamboo fractions was more efficient than addition of additives in the production of glucose and xylose. Moreover, addition of additives could further increase the glucose release from different bamboo fractions by cellulases and xylanase. Bamboo green exhibited the lowest hydrolyzability. Almost all of the polysaccharides in pretreated bamboo shoot fractions were hydrolyzed by cellulases with the addition of additives or xylanase. Additives and xylanase showed great potential for reducing cellulase requirement in the hydrolysis of bamboo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2015.05.100DOI Listing

Publication Analysis

Top Keywords

hydrolysis bamboo
16
bamboo fractions
16
addition additives
16
bamboo
15
additives xylanase
12
bamboo shoot
12
enzymatic hydrolysis
8
shoot mature
8
mature bamboo
8
bamboo green
8

Similar Publications

Effects of Multiple Treatments of Formic Acid on the Chemical Properties and Structural Features of Bamboo Powder.

Molecules

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China.

Under mild conditions, formic acid effectively separates the components of lignocellulose, removing the majority of the hemicellulose and lignin from the cellulose. However, it has not yet been determined if multiple treatments with fresh formic acid may totally remove hemicellulose and lignin. In this study, fresh formic acid was used to repeatedly pretreat the bamboo powder, and the effect of multiple treatments on the physicochemical structure of the bamboo powder was investigated using changes in fractions, enzymatic hydrolysis, hydrophilicity, cellulose crystallinity, and lignin structure.

View Article and Find Full Text PDF

Construction of lignin-derived microcapsule anti-mildew system with excellent anti-loss performance for Masson pine wood protection.

Int J Biol Macromol

January 2025

Bamboo Industry Institute, Zhejiang A&F University, Hangzhou 311300, China; College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:

Masson pine wood is widely used in living spaces, decoration, and construction. Owing to its high sugar content and tendency to mold. Masson pine wood has been treated with anti-mildew agents.

View Article and Find Full Text PDF
Article Synopsis
  • Short-chain xylo-oligosaccharides (XOS), specifically xylobiose (X2) and xylotriose (X3), have higher biological activities and are desirable to produce in larger quantities.
  • The research employed pH-controlled lactic acid hydrolysis and xylanase treatment on xylan extracted from moso bamboo, achieving a notable increase in XOS yield from 33.1% to 64.1%, with X2 and X3 forming 91.0% of the final product.
  • Additionally, deep eutectic solvent pretreatment efficiently removed 87.2% of lignin, leading to a high glucose yield of 96.9% from the residual biomass after
View Article and Find Full Text PDF

An energy-intensive and chemical-consuming pretreatment of bamboo is often required to develop its high-performance composites. This study is to evaluate a fungal and enzymatic pretreatment as a sustainable surface modification approach towards high-strength bamboo biocomposites based on D. sinicus.

View Article and Find Full Text PDF

Influence of biphasic phenoxyethanol-alkaline pretreatment on the correlation between inter-structure and enzymatic hydrolysis in bamboo residues.

Int J Biol Macromol

December 2024

Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

The effective promotion of delignification (67.6%) and xylan removal (44.8%) from bamboo residues using a 2-phenoxyethanol/sodium hydroxide solution (P/A) system is demonstrated, while simultaneously enriching oligosaccharides contents of the pre-hydrolysate to 10.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!