Tumor-specific metabolic changes can reveal new therapeutic targets. Our findings implicate a supporting role for fatty acid metabolism in chronic lymphocytic leukemia (CLL) cell survival. Peroxisome proliferator-activated receptor (PPAR)-α, a major transcriptional regulator of fatty acid oxidation, was recently shown to be upregulated in CLL. To evaluate PPARα as a potential therapeutic target, we developed a highly selective, potent small molecule antagonist of PPARα, NXT629. NXT629 inhibited agonist-induced transcription of PPARα-regulated genes, demonstrating target engagement in CLL cells. Furthermore, NXT629 induced apoptosis of CLL cells even in the presence of a protective microenvironment. To mimic the proliferative lymphoid compartment of CLL, we examined the activity of NXT629 on CLL cells that were stimulated to proliferate in vitro. NXT629 reduced the number of leukemia cells undergoing cell division. In addition, in two xenograft mouse models of CLL (one a model for nondividing and one for dividing CLL), NXT629 reduced the number of viable CLL cells in vivo. Overall, these results suggest that fatty acid metabolism promotes survival and proliferation of primary CLL cells and that inhibiting PPARα gene regulation could be a new therapeutic approach to treating CLL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559529 | PMC |
http://dx.doi.org/10.2119/molmed.2015.00139 | DOI Listing |
Indian J Pathol Microbiol
January 2025
Department of Medical Oncology, Regional Cancer Centre, Trivandrum, Kerala, India.
Hematological malignancies are known to have cutaneous manifestations, either in the form of direct infiltration of skin by malignant cells or as a result of paraneoplastic syndrome. Many hematological malignancies, including chronic lymphocytic leukemia (CLL), are known to cause malignancy-induced Eosinophilic Dermatoses. We present a case of an elderly woman who presented with multiple pruritic patches.
View Article and Find Full Text PDFNat Commun
January 2025
Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
Chronic lymphocytic leukemia is a malignant lymphoproliferative disorder for which primary or acquired drug resistance represents a major challenge. To investigate the underlying molecular mechanisms, we generate a mouse model of ibrutinib resistance, in which, after initial treatment response, relapse under therapy occurrs with an aggressive outgrowth of malignant cells, resembling observations in patients. A comparative analysis of exome, transcriptome and proteome of sorted leukemic murine cells during treatment and after relapse suggests alterations in the proteasome activity as a driver of ibrutinib resistance.
View Article and Find Full Text PDFBiomolecules
January 2025
National Center for Global Health, Italian Institute of Health, 00161 Rome, Italy.
In chronic lymphocytic leukemia (CLL), natural killer (NK) cells show a dysfunctional phenotype that correlates with disease progression. Our aim was to restore NK cell functionality in CLL through a specifically targeted IL15-stimulating activity; IL15 targeting could, in fact, potentiate the activity of NK cells and reduce off-target effects. We designed and developed a cis-acting immunocytokine composed of an anti-CD56 single-chain Fragment variable (scFv) and IL15, labeled scFvB1IL15.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Biosciences Institute & Newcastle University Cancer Centre, Medical Faculty, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
Chronic lymphocytic leukemia (CLL) treatment has transitioned from traditional chemotherapy to more targeted therapies, but challenges such as resistance and suboptimal responses persist. This study aimed to evaluate HDM201, a second-generation MDM2-p53 binding antagonist, as a novel therapeutic strategy for CLL, with a focus on its effectiveness across different genetic contexts. We utilized a panel of B cell leukemia-derived cell lines with varying statuses, including -knockout (KO) derivatives of the human B cell line Nalm-6, and assessed the impact of HDM201 on primary CLL samples with both wild-type and mutant backgrounds.
View Article and Find Full Text PDFCancers (Basel)
January 2025
Division of Hematology and Medical Oncology, University of Washington, Seattle, WA 98195, USA.
Pathway inhibitors targeting Bruton tyrosine kinase (BTK) and B-cell lymphoma-2 (BCL-2) have dramatically changed the treatment landscape for both treatment-naïve and relapsed/refractory chronic lymphocytic leukemia (CLL). However, with increased utilization, a growing number of patients will experience progressive disease on both agents. This subgroup of "double refractory" patients has limited treatment options and poor prognosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!