Control of cardiac alternans in an electromechanical model of cardiac tissue.

Comput Biol Med

Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB Canada T6G 2V4. Electronic address:

Published: August 2015

Electrical alternations in cardiac action potential duration have been shown to be a precursor to arrhythmias and sudden cardiac death. Through the mechanism of excitation-contraction coupling, the presence of electrical alternans induces alternations in the heart muscle contractile activity. Also, contraction of cardiac tissue affects the process of cardiac electric wave propagation through the mechanism of the so-called mechanoelectrical feedback. Electrical excitation and contraction of cardiac tissue can be linked by an electromechanical model such as the Nash-Panfilov model. In this work, we explore the feasibility of suppressing cardiac alternans in the Nash-Panfilov model which is employed for small and large deformations. Several electrical pacing and mechanical perturbation feedback strategies are considered to demonstrate successful suppression of alternans on a one-dimensional cable. This is the first attempt to combine electrophysiologically relevant cardiac models of electrical wave propagation and contractility of cardiac tissue in a synergistic effort to suppress cardiac alternans. Numerical examples are provided to illustrate the feasibility and the effects of the proposed algorithms to suppress cardiac alternans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2015.05.011DOI Listing

Publication Analysis

Top Keywords

cardiac alternans
16
cardiac tissue
16
cardiac
11
electromechanical model
8
contraction cardiac
8
wave propagation
8
nash-panfilov model
8
suppress cardiac
8
alternans
6
electrical
5

Similar Publications

Cardiac alternans (C-ALT) is a phenomenon of alternating strong and weak contractions in the heart and is considered a risk factor for the development of heart failure and arrhythmias. However, no model has been reported that can induce C-ALT in vitro using human cells, and the developmental mechanism of C-ALT has not been studied using human cells. In this study, we successfully induced C-ALT in vitro using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).

View Article and Find Full Text PDF

Background: Loss of stromal interaction molecule 1 (STIM1) expression in smooth muscle cells protects against ischemia-reperfusion (I/R) injury. Whether and how decreased STIM1 expression in cardiomyocytes (CM) impacts cardiac remodeling in response to I/R injury remains unknown.

Objective: To examine mechanisms by which decreased CM-STIM1 expression in the adult heart modulates cardiac function before and after I/R injury.

View Article and Find Full Text PDF

Dual calcium-voltage optical mapping of regional voltage and calcium signals in intact murine -R2474S hearts.

J Mol Cell Cardiol Plus

December 2024

Key Laboratory of Medical Electrophysiology of the Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China.

Unlabelled: Abnormal regional variations in electrical and calcium homeostasis properties have been implicated in catecholaminergic polymorphic ventricular tachycardias (CPVT) attributable to abnormal RyR2-mediated store Ca release, but their underlying mechanism have not been well explored in intact hearts.

Methods: We performed in vivo and ex vivo studies including high throughput mapping of Ca transients (CaT) and transmembrane voltage (V) in murine wild-type (WT) and heterozygous -R2474S/+ hearts, before and during isoprenaline (ISO) challenge.

Results: ISO-challenged -R2474S/+ showed increased incidence of arrhythmia accompanied by abnormal Ca transients compared to WT.

View Article and Find Full Text PDF
Article Synopsis
  • * This study creates a computer model to explore how reduced inactivation of calcium channels leads to fluctuating EADs, which can sync up in heart tissue due to the connections between cells, resulting in predictable patterns.
  • * The results show that EADs occur after a sudden synchronization (alternans) of heart cells, driven by small changes in pacing rate, which significantly increases the risk of arrhythmias and suggests that abnormal heartbeats can occur without other triggering factors.
View Article and Find Full Text PDF

Mutations in the ryanodine receptor (RyR2) gene have been linked to arrhythmia and possibly sudden cardiac death (SCD) during acute emotional stress, physical activities, or catecholamine perfusion. The most prevalent disorder is catecholaminergic polymorphic ventricular tachycardia (CPVT1). Four primary mechanisms have been proposed to describe CPVT1 with a RyR2 mutation: (a) gain-of-function, (b) destabilization of binding proteins, (c) store-overload-induced Ca release (SOICR), and (d) loss of function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!