Type 2 diabetes mellitus and Alzheimer's disease are both associated with increasing age, and each increases the risk of development of the other. Epidemiological, clinical, biochemical and imaging studies have shown that elevated glucose levels and diabetes are associated with cognitive dysfunction, the most prevalent cause of which is Alzheimer's disease. Cross sectional studies have clearly shown such an association, whereas longitudinal studies are equivocal, reflecting the many complex ways in which the two interact. Despite the dichotomy, common risk and etiological factors (obesity, dyslipidemia, insulin resistance, and sedentary habits) are recognized; correction of these by lifestyle changes and pharmacological agents can be expected to prevent or retard the progression of both diseases. Common pathogenic factors in both conditions span a broad sweep including chronic hyperglycemia per se, hyperinsulinemia, insulin resistance, acute hypoglycemic episodes, especially in the elderly, microvascular disease, fibrillar deposits (in brain in Alzheimer's disease and in pancreas in type 2 diabetes), altered insulin processing, inflammation, obesity, dyslipidemia, altered levels of insulin like growth factor and occurrence of variant forms of the protein butyrylcholinesterase. Of interest not only do lifestyle measures have a protective effect against the development of cognitive impairment due to Alzheimer's disease, but so do some of the pharmacological agents used in the treatment of diabetes such as insulin (especially when delivered intranasally), metformin, peroxisome proliferator-activated receptors γ agonists, glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes must be recognized as a risk for development of Alzheimer's disease; clinicians must ensure preventive care be given to control and postpone both conditions, and to identify cognitive impairment early to manage it appropriately.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4458503 | PMC |
http://dx.doi.org/10.4239/wjd.v6.i5.744 | DOI Listing |
Eur J Nucl Med Mol Imaging
January 2025
Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China.
Purpose: This study evaluated the differences in amyloid-β (Aβ), tau deposition, and longitudinal tau deposition between subjective cognitive decline (SCD) and objective subtle cognitive difficulties (Obj-SCD).
Methods: Participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort (n = 234) and the Huashan cohort (n = 267) included individuals with Obj-SCD, SCD, subjective memory concern (SMC), and healthy controls (HC). General linear models (GLM) were used to compare baseline and longitudinal differences in Aβ and tau among the groups, and to examine the associations between these biomarkers.
J Appl Lab Med
January 2025
Eli Lilly and Company, Indianapolis, IN, United States.
Background: Blood-based biomarkers, especially P-tau217, have been gaining interest as diagnostic tools to measure Alzheimer disease (AD) pathology.
Methods: We developed a plasma P-tau217 chemiluminescent immunoassay using 4G10E2 and IBA493 as antibodies, a synthetic tau peptide as calibrator, and the Quanterix SP-X imager. Analytical validation performed in a College of American Pathologists-accredited CLIA laboratory involved multiple kit lots, operators, timepoints, and imagers.
J Physiol
January 2025
Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada.
ACS Sens
January 2025
School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive decline, significantly impairing the daily life of elderly individuals. The low abundance of blood-based biomarkers in AD necessitates higher analytical technique requirements. Herein, one novel iridium-based ECL self-enhanced nanoemitter (TPrA@Ir-SiO) was unprecedentedly reported, and it was further used to construct an ultrasensitive ECL magnetic immunosensor by a multiple-signal amplification strategy to unequally sensitively and accurately detect the AD blood-based biomarker (P-tau181) in this work.
View Article and Find Full Text PDFGeriatr Psychol Neuropsychiatr Vieil
December 2024
Pôle recherche LNA Santé, Vertou, France.
People suffering from a neurodegenerative disease, at a stage still allowing physical activity, encounter more difficulties to access to re-education and rehabilitation care. A trial unit specialized in medical care and rehabilitation (SMR) was created to handle these patients, who suffered a morbid intercurrent event not related to the neurocognitive disorder. The trial unit was created thanks to a dedicated funding from the Brittany Health Regional Agency (ARS) following-up a call for projects in October 2021.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!