We have examined the effect of media made with tap water or with various purified waters on the fertilization of mouse oocytes, their development to blastocysts, their rate of hatching in vitro and their survival after transfer to recipients. Zona-intact and zona-free embryos, as well as cell clusters from 8-cell stage embryos, were also used. The macromolecular composition of the media was varied. We were unable to find any adverse effect of tap water under any condition examined. The implications of these findings for quality control in IVF units are discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1093/oxfordjournals.humrep.a136994DOI Listing

Publication Analysis

Top Keywords

quality control
8
control ivf
8
tap water
8
ivf laboratory
4
laboratory in-vitro
4
in-vitro in-vivo
4
in-vivo development
4
development mouse
4
mouse embryos
4
embryos unaffected
4

Similar Publications

Efficient production system for hydrogel-based transparent soil for plant root observation.

Biotechniques

January 2025

Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.

Observation of plant root morphology in soil is of fundamental importance in plant research, but the lack of transparency of the soil hampers direct observation of roots. One of the approaches to overcome this technical limitation is the use of "transparent soil" (TS), hydrogel-based beads produced by spherification of gelling agents. However, the production of TS by natural dripping of gelling solution can be labor intensive, time consuming and difficult to maintain consistent product quality.

View Article and Find Full Text PDF

Purpose Muscle atrophy progresses with age. The motor function may be estimated by measuring the muscle mass; however, if muscle quality deteriorates due to an increase in connective tissue within the muscle, a decline in motor function may be missed by measuring muscle mass alone. Therefore, it is important to understand the relationship between muscle mass, muscle quality, and motor function.

View Article and Find Full Text PDF

Optic nerve disorders significantly contribute to visual impairment with irreversible visual deficits. Current treatments have limited efficacy in resolving chronic visual deficits, necessitating novel therapeutic strategies. Neurorehabilitation techniques, including repetitive transorbital alternating current stimulation (rtACS), have emerged as promising approaches to restore lost visual function through the ability to modulate brain activity.

View Article and Find Full Text PDF

Seeking effective improvement agent control measures to enhance the photosynthetic physiological traits and yield levels of spring maize is crucial for efficient green agriculture in arid regions. Therefore, this study was conducted to clarify the effects of coupling improvement agents under magnetoelectric activated water irrigation conditions on the photosynthetic physiological traits, grain nutrients, and yield of spring maize in the arid region of northwest China. Field experiments were set up with three concentrations of growth regulators: 400 times (G1), 500 times (G2), and 600 times (G3), and three amounts of : 15 kg/ha (R1), 45 kg/ha (R2), and 75 kg/ha (R3), along with a control group CK, making a total of 10 treatments applied in the field experiment.

View Article and Find Full Text PDF

The total oxidation of -hexane, a hazardous volatile organic compound (VOC) emitted by the pharmaceutical industry, presents a significant environmental challenge due to limited catalyst activity at low temperatures and poor stability at high temperatures. Here, we present a novel approach that overcomes these limitations by employing single-atom Ag/MnO catalysts coupled with nonthermal plasma (NTP). This strategy achieves exceptional performance in -hexane oxidation at low temperatures, demonstrating 96.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!