Plasma apolipoprotein C-III levels, triglycerides, and coronary artery calcification in type 2 diabetics.

Arterioscler Thromb Vasc Biol

From the Department of Medicine, Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (A.Q., S.A.K., D.J.R., M.P.R.); Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston (A.V.K.); and Division of Cardiology, Department of Medicine, University of California at San Francisco (A.Q.).

Published: August 2015

Objective: Triglyceride-rich lipoproteins have emerged as causal risk factors for developing coronary heart disease independent of low-density lipoprotein cholesterol levels. Apolipoprotein C-III (ApoC-III) modulates triglyceride-rich lipoprotein metabolism through inhibition of lipoprotein lipase and hepatic uptake of triglyceride-rich lipoproteins. Mutations causing loss-of-function of ApoC-III lower triglycerides and reduce coronary heart disease risk, suggestive of a causal role for ApoC-III. Little data exist about the relationship of ApoC-III, triglycerides, and atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Here, we examined the relationships between plasma ApoC-III, triglycerides, and coronary artery calcification in patients with T2DM.

Approach And Results: Plasma ApoC-III levels were measured in a cross-sectional study of 1422 subjects with T2DM but without clinically manifest coronary heart disease. ApoC-III levels were positively associated with total cholesterol (Spearman r=0.36), triglycerides (r=0.59), low-density lipoprotein cholesterol (r=0.16), fasting glucose (r=0.16), and glycosylated hemoglobin (r=0.12; P<0.0001 for all). In age, sex, and race-adjusted analysis, ApoC-III levels were positively associated with coronary artery calcification (Tobit regression ratio, 1.78; 95% confidence interval, 1.27-2.50 per SD increase in ApoC-III; P<0.001). As expected for an intermediate mediator, these findings were attenuated when adjusted for both triglycerides (Tobit regression ratio, 1.43; 95% confidence interval, 0.94-2.18; P=0.086) and separately for very low-density lipoprotein cholesterol (Tobit regression ratio, 1.14; 95% confidence interval, 0.75-1.71; P=0.53).

Conclusions: In persons with T2DM, increased plasma ApoC-III is associated with higher triglycerides, less favorable cardiometabolic phenotypes, and higher coronary artery calcification, a measure of subclinical atherosclerosis. Therapeutic inhibition of ApoC-III may thus be a novel strategy for reducing plasma triglyceride-rich lipoproteins and cardiovascular risk in T2DM.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4556282PMC
http://dx.doi.org/10.1161/ATVBAHA.115.305415DOI Listing

Publication Analysis

Top Keywords

coronary heart
12
heart disease
12
apolipoprotein c-iii
8
triglycerides coronary
8
coronary artery
8
artery calcification
8
triglyceride-rich lipoproteins
8
low-density lipoprotein
8
lipoprotein cholesterol
8
apoc-iii triglycerides
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!