The use of chimeric antigen receptor (CAR)-modified T cells is a promising approach for cancer immunotherapy. These genetically modified receptors contain an antigen-binding moiety, a hinge region, a transmembrane domain, and an intracellular costimulatory domain resulting in T-cell activation subsequent to antigen binding. Optimal tumor removal through CAR-modified T cells requires suitable target antigen selection, co-stimulatory signaling domain, and the ability of CAR T cells to traffic, persist, and retain antitumor function after adoptive transfer. There are several elements which can improve antitumor function of CAR T cells, including signaling, conditioning chemotherapy and irradiation, tumor burden of the disease, T-cell phenotype, and supplementary cytokine usage. This review outlines four generations of CAR. The pre-clinical and clinical studies showed that this technique has a great potential for treatment of solid and hematological malignancies. The main purpose of the current review is to focus on the pre-clinical and clinical developments of CAR-based immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/21691401.2015.1052465 | DOI Listing |
PLoS One
January 2025
Department of Pathology, Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America.
Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer and the second leading cause of cancer-related mortality globally. Despite advancements in current HCC treatment, it remains a malignancy with poor prognosis. Therefore, developing novel treatment options for patients with HCC is urgently needed.
View Article and Find Full Text PDFMethods Cell Biol
January 2025
Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between the DKFZ Heidelberg and LMU University Hospital, Munich, Germany; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany. Electronic address:
Treatment with autologous chimeric antigen receptor (CAR)-modified T cells can achieve outstanding clinical response rates in heavily pretreated patients with B and plasma cell malignancies. However, relapses occur, and they limit the efficacy of this promising treatment approach. The complex GMP-compliant production and high treatment costs cause that CAR T cells cannot yet be used in a broad population.
View Article and Find Full Text PDFCancer Immunol Immunother
January 2025
Department of Health Sciences, The Graduate School of Dong-A University, Busan, 49315, Republic of Korea.
ErbB3 is markedly overexpressed in breast cancer cells and is associated with resistance and metastasis. Additionally, ErbB3 expression levels are positively correlated with low densities of tumor-infiltrating lymphocytes, a marker of poor prognosis. Consequently, ErbB3 is a promising therapeutic target for cancer immunotherapy.
View Article and Find Full Text PDFPresse Med
December 2024
Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, Germany. Electronic address:
Although the prognosis of patients with multiple myeloma (MM) has been significantly improved by the introduction of proteasome inhibitors, immunomodulatory drugs and monoclonal antibodies, MM is still considered an incurable disease in the vast majority of the patients. In recent years, T-cell based immunotherapy represents a novel treatment strategy for relapsed/refractory (RR) MM. So far, chimeric antigen receptor (CAR) modified T-cells and bispecific T-cell engaging antibodies (bsAb) have shown promising anti-MM efficacy and manageable safety profile within clinical trials, and B-cell maturation antigen (BCMA) is the most commonly used immune target for T-cell based immunotherapies in MM.
View Article and Find Full Text PDFFront Immunol
November 2024
Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
Hepatocellular carcinoma (HCC) ranks among the most prevalent cancers worldwide, highlighting the urgent need for improved diagnostic and therapeutic methodologies. The standard treatment regimen generally involves surgical intervention followed by systemic therapies; however, the median survival rates for patients remain unsatisfactory. Chimeric antigen receptor (CAR) T-cell therapy has emerged as a pivotal advancement in cancer treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!