A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Müller Glia Are a Major Cellular Source of Survival Signals for Retinal Neurons in Diabetes. | LitMetric

Müller Glia Are a Major Cellular Source of Survival Signals for Retinal Neurons in Diabetes.

Diabetes

Section of Endocrinology and Diabetes, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK Department of Ophthalmology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK

Published: October 2015

AI Article Synopsis

  • The study investigates the importance of VEGFR2 in Müller cells and its impact on neuroprotection in diabetic retinopathy (DR).
  • Disruption of VEGFR2 in mouse Müller glial cells led to a significant decline in cell density and neuronal health over time in diabetic retinas.
  • Results indicate that preserving VEGFR2 is crucial for maintaining Müller cell survival and overall retinal neuron viability in diabetes, offering a model for further research into neuronal changes in DR.

Article Abstract

To dissect the role of vascular endothelial growth factor receptor-2 (VEGFR2) in Müller cells and its effect on neuroprotection in diabetic retinopathy (DR), we disrupted VEGFR2 in mouse Müller glia and determined its effect on Müller cell survival, neuronal integrity, and trophic factor production in diabetic retinas. Diabetes was induced with streptozotocin. Retinal function was measured with electroretinography. Müller cell and neuronal densities were assessed with morphometric and immunohistochemical analyses. Loss of VEGFR2 caused a gradual reduction in Müller glial density, which reached to a significant level 10 months after the onset of diabetes. This observation was accompanied by an age-dependent decrease of scotopic and photopic electroretinography amplitudes and accelerated loss of rod and cone photoreceptors, ganglion cell layer cells, and inner nuclear layer neurons and by a significant reduction of retinal glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor. Our results suggest that VEGFR2-mediated Müller cell survival is required for the viability of retinal neurons in diabetes. The genetically altered mice established in this study can be used as a diabetic animal model of nontoxin-induced Müller cell ablation, which will be useful for exploring the cellular mechanisms of neuronal alteration in DR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4587642PMC
http://dx.doi.org/10.2337/db15-0180DOI Listing

Publication Analysis

Top Keywords

müller cell
16
müller
8
müller glia
8
retinal neurons
8
neurons diabetes
8
cell survival
8
neurotrophic factor
8
cell
6
glia major
4
major cellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!