We observe distinct regimes of orbital angular momentum (OAM) transfer from two-dimensional Bessel-shaped acoustic vortices to matter. In a homogeneous diphasic mixture of microparticles and water, slow swirling about the vortex axis is seen. This effect is driven by the absorption of OAM across the mixture, the motion following the OAM density distribution. Larger particles are formed into clusters by the acoustic radiation force, making the mixture nonhomogeneous. Here, the OAM transfer to the microparticle clusters dominates and they spin at high speeds entraining the surrounding fluid.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.114.214301 | DOI Listing |
Nanomaterials (Basel)
January 2025
Department of Physics and Natural Science Research Institute, University of Seoul, Seoul 02504, Republic of Korea.
Bulk n-type SrTiO (STO) has long been known to possess a superconducting ground state at an exceptionally dilute carrier density. This has raised questions about the applicability of the BCS-Eliashberg paradigm with its underlying adiabatic assumption. However, recent experimental reports have set the pairing gap to the critical temperature (Tc) ratio at the BCS value for superconductivity in Nb-doped STO, even though the adiabaticity condition the BCS pairing requires is satisfied over the entire superconducting dome only by the lowest branch of optical phonons.
View Article and Find Full Text PDFEur Phys J C Part Fields
January 2025
Department of Physics, University of Alberta, Edmonton, AB T6G 2E1 Canada.
We analyze the angular momentum balance for a particle undergoing Thomas precession. The relationships among relativistic torque, the center of mass, and the center of inertia for a spinning particle are clarified. We show that spin precession is accompanied by orbital angular momentum precession, and present examples of the resulting out-of-plane motion.
View Article and Find Full Text PDFNanophotonics
January 2025
Departments of Optics and General Physics, Francisk Skorina Gomel State University, Sovetskaya Str. 104, Gomel 246019, Belarus.
Optical vortex beams carrying orbit angular momentum have attracted significant attention recently. Perfect vortex beams, characterized by their topological charge-independent intensity profile, have important applications in enhancing communication capacity and optimizing particle manipulation. In this paper, metal-insulator-metal copper-coin type reflective metasurfaces are proposed to generate perfect composite vortex beams in X-band.
View Article and Find Full Text PDFSci Bull (Beijing)
January 2025
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China. Electronic address:
Hybrid continuous-variable (CV) and discrete-variable (DV) entanglement is an essential quantum resource of hybrid quantum information processing, which enables one to overcome the intrinsic limitations of CV and DV quantum protocols. Besides CV and DV quantum variables, introducing more degrees of freedom provides a feasible approach to increase the information carried by the entangled state. Among all the degrees of freedom of photons, orbital angular momentum (OAM) has potential applications in enhancing the communication capacity of quantum communication and precision of quantum measurement.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Abteilung für Molekulare Physikalische Chemie, Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstraße 12, 53115 Bonn, Germany.
The binding of carbon dioxide to a transition metal is a complex phenomenon that involves a major redistribution of electron density between the metal center and the triatomic ligand. The chemical reduction of the ligand reveals itself unambiguously by an angular distortion of the CO-molecule as a result of the occupation of an anti-bonding π-orbital and a shift of its antisymmetric stretching vibration, ν, to lower wavenumbers. Here, we generate a carbon dioxide complex of the heavier group-10 metal, platinum, by ultrafast electronic excitation and cleavage of CO from the photolabile oxalate precursor, oxaliplatin, and monitored the ensuing primary dynamics with ultrafast mid-infrared spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!