Farey sequence in the appearance of subharmonic Shapiro steps.

Phys Rev E Stat Nonlin Soft Matter Phys

"Vinča" Institute of Nuclear Sciences, Laboratory for Theoretical and Condensed Matter Physics 020, University of Belgrade, P.O. Box 522, 11001 Belgrade, Serbia.

Published: May 2015

The largest Lyapunov exponent has been examined in the dynamical-mode locking phenomena of the ac+dc driven dissipative Frenkel-Kontorova model with deformable substrate potential. Due to deformation, large fractional and higher order subharmonic steps appear in the response function of the system. Computation of the largest Lyapunov exponent as a way to verify their presence led to the observation of the Farey sequence. In the standard regime, the appearance of half-integer and other subharmonic steps between the large harmonic steps, and their relative sizes follow the Farey construction. In the nonstandard regime, however, the half-integer steps are larger than harmonic ones, and Farey construction is only present in the appearance of higher order subharmonic steps. The examination of Lyapunov exponents has also shown that regardless of the substrate potential or deformation, there was no chaos in the system.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.91.052904DOI Listing

Publication Analysis

Top Keywords

subharmonic steps
12
farey sequence
8
largest lyapunov
8
lyapunov exponent
8
substrate potential
8
potential deformation
8
higher order
8
order subharmonic
8
farey construction
8
steps
6

Similar Publications

Histotripsy is a focused ultrasound therapy that ablates tissue via bubble cloud activity. Real-time ultrasound image guidance is used to ensure safe and effective treatment. Plane-wave imaging enables tracking of histotripsy bubble clouds at a high frame rate but lacks adequate contrast.

View Article and Find Full Text PDF

Numerical simulations are used to examine the dynamics of the dc-driven Frenkel-Kontorova model with an oscillation substrate subjected to lateral periodic excitations in overdamped and underdamped cases, respectively. The results reveal that the system exhibits frequency locking and chaotic behaviors due to the fact that the lateral vibration of the substrate potential introduces an additional frequency and degree of freedom into the system. In the overdamped case, we show that the appearance of subharmonic Shapiro steps can be attributed to the deformation of the substrate potential or inertia.

View Article and Find Full Text PDF

Slowly activating outward membrane currents generate input-output sub-harmonic cross frequency coupling in neurons.

J Theor Biol

January 2021

Northwestern Interdepartmental Neuroscience Program, Feinberg School of Medicine, Northwestern University, 320 E Superior Street, Morton 1-645, Chicago, IL 60611-3010, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N. Michigan Ave., Suite 1100, Chicago, IL 60611, USA; Stephenson School of Biomedical Engineering, University of Oklahoma, 4502 E. 41st St, Tulsa, OK 74135, USA; Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136, USA. Electronic address:

A major challenge in understanding spike-time dependent information encoding in the neural system is the non-linear firing response to inputs of the individual neurons. Hence, quantitative exploration of the putative mechanisms of this non-linear behavior is fundamental to formulating the theory of information transfer in the neural system. The objective of this simulation study was to evaluate and quantify the effect of slowly activating outward membrane current, on the non-linearity in the output of a one-compartment Hodgkin-Huxley styled neuron.

View Article and Find Full Text PDF

The slip-step method is widely used in simulating optical wave propagation in turbulent atmosphere, which treats propagation and phase perturbations caused by turbulence separately and in discrete steps along the propagation axis. The phase perturbations are represented by a series of phase screens, and hence, the precision of the phase screen concerns the accuracy of the simulation. In this paper, we first discuss the precision and computational performance of phase screens generated by the subharmonic complemented discrete Fourier transformation (DFT) (DFT-SH) method, three kinds of randomized spectral sampling techniques (sparse spectrum (SS) technique, sparse spectrum technique with uniform wave vectors (SU), randomized DFT technique), and optimization-based (OB) method; then, the simulations are implemented with the phase screens generated by these methods.

View Article and Find Full Text PDF

The effects of inertial terms on the dynamics of the dc+ac driven Frenkel-Kontorova model were examined. As the mass of particles was varied, the response of the system to the driving forces and appearance of the Shapiro steps were analyzed in detail. Unlike in the overdamped case, the increase of mass led to the appearance of the whole series of subharmonic steps in the staircase of the average velocity as a function of average driving force in any commensurate structure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!