Synchrony in stochastically driven neuronal networks with complex topologies.

Phys Rev E Stat Nonlin Soft Matter Phys

Courant Institute of Mathematical Sciences and Center for Neural Science, New York University, 251 Mercer Street, New York, New York 10012, USA.

Published: May 2015

We study the synchronization of a stochastically driven, current-based, integrate-and-fire neuronal model on a preferential-attachment network with scale-free characteristics and high clustering. The synchrony is induced by cascading total firing events where every neuron in the network fires at the same instant of time. We show that in the regime where the system remains in this highly synchronous state, the firing rate of the network is completely independent of the synaptic coupling, and depends solely on the external drive. On the other hand, the ability for the network to maintain synchrony depends on a balance between the fluctuations of the external input and the synaptic coupling strength. In order to accurately predict the probability of repeated cascading total firing events, we go beyond mean-field and treelike approximations and conduct a detailed second-order calculation taking into account local clustering. Our explicit analytical results are shown to give excellent agreement with direct numerical simulations for the particular preferential-attachment network model investigated.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.91.052806DOI Listing

Publication Analysis

Top Keywords

stochastically driven
8
preferential-attachment network
8
cascading total
8
total firing
8
firing events
8
synaptic coupling
8
network
5
synchrony stochastically
4
driven neuronal
4
neuronal networks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!