The incorporation of magnetic barium hexaferrite nanoparticles in a transparent polymer matrix of poly(methyl methacrylate) (PMMA) is reported for the first time. The barium hexaferrite nanoplatelets doped with Sc(3+), i.e., BaSc0.5Fe11.5O12 (BaHF), having diameters in the range 20 to 130 nm and thicknesses of approximately 5 nm, are synthesized hydrothermally and stabilized in 1-butanol with dodecylbenzenesulfonic acid. This method enables the preparation of monolithic nanocomposites by admixing the BaHF suspension into a liquid monomer, followed by in-situ, bulk free-radical polymerization. The PMMA retains its transparency for loadings of BaHF nanoparticles up to 0.27 wt.%, meaning that magnetically and optically anisotropic, monolithic nanocomposites can be synthesized when the polymerization is carried out in a magnetic field. The excellent dispersion of the magnetic nanoparticles, coupled with a reasonable control over the magnetic properties achieved in this investigation, is encouraging for the magneto-optical applications of these materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464329 | PMC |
http://dx.doi.org/10.1038/srep11395 | DOI Listing |
Sci Rep
December 2024
School of Physics and Materials Science, Shoolini University, Solan, H.P., India.
The industrial sector faces a significant challenge in finding the highly effective and efficient treatments for harmful dye-based color effluents. In this study, pure and cobalt doped barium hexaferrite of chemical formula, BaCoFeO (x = 0-0.06) are made via sol-gel auto-combustion (SC) methodology.
View Article and Find Full Text PDFM-type barium hexaferrites (BaLaFeO) were prepared by the liquid phase epitaxial (LPE) method, in which Ba was substituted by La. The Faraday rotation effect of materials in the frequency range of 0.5-0.
View Article and Find Full Text PDFNanomaterials (Basel)
June 2024
Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, 98693 Ilmenau, Germany.
Using magnetic nanoparticles (MNPs) for extracorporeal heating applications results in higher field strength and, therefore, particles of higher coercivity can be used, compared to intracorporeal applications. In this study, we report the synthesis and characterization of barium hexa-ferrite (BaFeO) nanoparticles as potential particles for magnetic heating. Using a precipitation method followed by high-temperature calcination, we first studied the influence of varied synthesis parameters on the particles' properties.
View Article and Find Full Text PDFSensors (Basel)
December 2023
Department of Physics, Oakland University, Rochester, MI 48309, USA.
The magnetoelectric effect (ME) is an important strain mediated-phenomenon in a ferromagnetic-piezoelectric composite for a variety of sensors and signal processing devices. A bias magnetic field, in general, is essential to realize a strong ME coupling in most composites. Magnetic phases with (i) high magnetostriction for strong piezomagnetic coupling and (ii) large anisotropy field that acts as a built-in bias field are preferred so that miniature, ME composite-based devices can operate without the need for an external magnetic field.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2024
Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Jamova 39, SI-1000 Ljubljana, Slovenia. Electronic address:
Magneto-mechanical actuation (MMA) using the low-frequency alternating magnetic fields (AMFs) of magnetic nanoparticles internalized into cancer cells can be used to irreparably damage these cells. However, nanoparticles in cells usually agglomerate, thus greatly augmenting the delivered force compared to single nanoparticles. Here, we demonstrate that MMA also decreases the cell viability, with the MMA mediated by individual, non-interacting nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!