Here we report the mitochondrial genome sequence of the garden pea leafminer Chromatomyia horticola (Goureau, 1851) (Diptera: Agromyzidae) (GenBank accession no. KR047789). This is the first species with sequenced mitochondrial genome from the genus Chromatomyia. The current length with partial A  +  T-rich region of this mitochondrial genome is 15,320 bp with an A  +  T content of 77.54%. All the 13 protein-coding, two rRNA, and 22 tRNA genes were sequenced, except for the A  +  T-rich region. As in most other sequenced mitochondrial genomes of Diptera, there is no rearrangement compared with the pupative ancestral arrangement of insects. All protein-coding genes start with the ATN start codon except for the gene cox1, which uses abnormal TTG. The A  +  T-rich region is located between rrnS and trnI with a sequenced length of 503 bp. Phylogenetic analysis using the Bayesian method based on the first and second codon positions of the 13 protein-coding genes recovered the monophyly of Agromyzidae with one species of Chromatomyia and four species of Liriomyza in our study. The superfamily Oestroidea (with Agromyzidae in analysis) is sister to the Opomyzoidea.

Download full-text PDF

Source
http://dx.doi.org/10.3109/19401736.2015.1043531DOI Listing

Publication Analysis

Top Keywords

mitochondrial genome
16
a  +  t-rich region
12
garden pea
8
pea leafminer
8
leafminer chromatomyia
8
chromatomyia horticola
8
horticola goureau
8
goureau 1851
8
1851 diptera
8
diptera agromyzidae
8

Similar Publications

The complete chloroplast genome and phylogenetic analysis of (Meisn.) Migo (Polygonaceae).

Mitochondrial DNA B Resour

January 2025

School of Ecology and Environmental Science, Yunnan University, Kunming, China.

is a plant distributed at meadow or wetland. Our study reports the complete chloroplast genome. The chloroplast genome of is a typical tetrameric structure with a total length of 159,843 bp, containing a large single-copy (LSC) region of 84,350 bp, a small single-copy (SSC) region of 13,151 bp, and two inverted repeat regions (IRs) of 31,171 bp.

View Article and Find Full Text PDF

Objectives: Nepenthes, sometimes known as tropical pitcher plants or monkey cups, is a carnivorous plant genus that contains more than 160 species. Nepenthes khasiana, India's sole representative of the genus, is a rare and endangered dioecious plant endemic to North-east India. Despite the fact that it is a prominent insectivorous plant in the Nepenthaceae family, genomic resources for the species are limited, making genomic breeding and understanding the genetic basis of botanical carnivory difficult.

View Article and Find Full Text PDF

Mitochondrial DNA alterations in precision oncology: Emerging roles in diagnostics and therapeutics.

Clinics (Sao Paulo)

January 2025

Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil; Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo, Brazil. Electronic address:

Mitochondria are dynamic organelles essential for vital cellular functions, including ATP production, apoptosis regulation, and calcium homeostasis. Increasing research has highlighted the significance of mitochondrial DNA (mtDNA) content and alterations in the development and progression of various diseases, including cancer. The high mutation rate and vulnerability of mtDNA to damage make these alterations valuable biomarkers for cancer diagnosis, monitoring disease progression, detecting metastasis, and predicting treatment resistance across different tumor types.

View Article and Find Full Text PDF

Background And Objectives: Mitochondrial disorders are multiorgan disorders resulting in significant morbidity and mortality. We aimed to characterize death-associated factors in an international cohort of deceased individuals with mitochondrial disorders.

Methods: This cross-sectional multicenter observational study used data provided by 26 mitochondrial disease centers from 8 countries from January 2022 to March 2023.

View Article and Find Full Text PDF

Mitochondrial genomes are a rich source of data for various downstream analyses such as population genetics, phylogeny, and systematics. Today it is possible to assemble rapidly large numbers of mitogenomes, mainly employing next-generation sequencing and third-generation sequencing. However, verification of the correctness of the generated sequences is often lacking, especially for noncoding, length-variable parts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!