AI Article Synopsis

  • The study explores the role of progesterone receptors (PR) during brain development, particularly in the mesocortical dopamine pathway, which is crucial for behaviors affected in disorders like autism and ADHD.
  • PR-immunoreactive cells in the ventral tegmental area (VTA) also express tyrosine hydroxylase and project to the medial prefrontal cortex (mPFC), indicating a functional connection important for neural development.
  • Neonatal exposure to a PR antagonist reduces dopamine levels and impairs cognitive functions in adulthood, suggesting that PR plays a significant role in regulating developmental processes that could be linked to behavioral disorders.

Article Abstract

Background: Numerous psychiatric and behavioral disorders such as autism, attention deficit disorder and schizophrenia may involve disruptions in the development of the mesocortical dopamine pathway, consisting of dopaminergic projections from the midbrain ventral tegmental area (VTA) to the medial prefrontal cortex (mPFC). Nuclear steroid hormone receptors are powerful transcription factors and can profoundly and permanently alter fundamental processes of neural development. Nuclear progesterone receptor (PR) is transiently expressed in both the VTA and the PFC of rodents during perinatal life, suggesting that PR may regulate the normal development of this important behavioral circuit.

Methods And Results: Here, we demonstrate that virtually all PR-immunoreactive (PR-ir) cells in the VTA also express tyrosine hydroxylase immunoreactivity (TH-ir). In addition, retrograde tract tracing reveals that many PR-ir cells in the VTA project to the mPFC. Administration of a PR antagonist to rats during the neonatal period decreased TH-ir fiber density in the prelimbic mPFC of juveniles (postnatal day 25) and decreased levels of TH-ir in the VTA of adults. Neonatal treatment with a PR antagonist impaired adult performance on a passive inhibitory avoidance task and an attentional set-shifting task, measures of behavioral inhibition/impulsivity and cognitive flexibility, respectively. TH-ir levels in the VTA were reduced and cognitive flexibility was impaired in PR knockout mice as well.

Conclusions: These findings provide novel insights into a potential role for PR in the developmental etiology of behavioral disorders that involve impairments in complex cognitive behaviors and have implications for the use of synthetic progestins in humans during critical neurodevelopmental periods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4675705PMC
http://dx.doi.org/10.1159/000434725DOI Listing

Publication Analysis

Top Keywords

progesterone receptor
8
mesocortical dopamine
8
dopamine pathway
8
complex cognitive
8
behavioral disorders
8
pr-ir cells
8
cells vta
8
cognitive flexibility
8
vta
6
receptor expression
4

Similar Publications

Triple-negative breast cancer (TNBC) is a unique breast cancer subtype characterized by the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression in tumor cells. TNBC represents about 15% to 20% of all breast cancers and is aggressive and highly malignant. Currently, TNBC diagnosis primarily depends on pathological examination, while treatment efficacy is assessed through imaging, biomarker detection, pathological evaluation, and clinical symptom improvement.

View Article and Find Full Text PDF

[Solid, endometrial-like and transitional growth patterns of ovarian high-grade serous carcinoma: a clinicopathological analysis of 25 cases].

Zhonghua Bing Li Xue Za Zhi

February 2025

Department of Pathology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215002, China.

To investigate the clinicopathological characteristics of solid, endometrial-like and transitional (SET) cell growth subtype in high-grade serous ovarian carcinoma (HGSC). Clinical data of 25 cases of HGSC-SET were collected from January 2020 to March 2024 at the Affiliated Suzhou Hospital of Nanjing Medical University, and their histological features were analyzed. Immunohistochemical stains were used to analyze the expression of ER, PR, PAX8, WT-1, p16, p53 and Ki-67.

View Article and Find Full Text PDF

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

The synthesis of ()-1-(1,3-diphenylallyl)-1-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. : A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!