A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 144

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Physicomechanical properties of sintered scaffolds formed from porous and protein-loaded poly(DL-lactic-co-glycolic acid) microspheres for potential use in bone tissue engineering. | LitMetric

An injectable poly(DL-lactic-co-glycolic acid) (PLGA) system comprising both porous and protein-loaded microspheres capable of forming porous scaffolds at body temperature was developed for tissue regeneration purposes. Porous and non-porous (lysozyme loaded) PLGA microspheres were formulated to represent 'low molecular weight' 22-34 kDa, 'intermediate molecular weight' (IMW) 53 kDa and 'high molecular weight' 84-109 kDa PLGA microspheres. The respective average size of the microspheres was directly related to the polymer molecular weight. An initial burst release of lysozyme was observed from both microspheres and scaffolds on day 1. In the case of the lysozyme-loaded microspheres, this burst release was inversely related to the polymer molecular weight. Similarly, scaffolds loaded with 1 mg lysozyme/g of scaffold exhibited an inverse release relationship with polymer molecular weight. The burst release was highest amongst IMW scaffolds loaded with 2 and 3 mg/g. Sustained lysozyme release was observed after day 1 over 50 days (microspheres) and 30 days (scaffolds). The compressive strengths of the scaffolds were found to be inversely proportional to PLGA molecular weight at each lysozyme loading. Surface analysis indicated that some of the loaded lysozyme was distributed on the surfaces of the microspheres and thus responsible for the burst release observed. Overall the data demonstrates the potential of the scaffolds for use in tissue regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2015.1058696DOI Listing

Publication Analysis

Top Keywords

molecular weight
16
burst release
16
molecular weight'
12
polymer molecular
12
microspheres
9
scaffolds
8
porous protein-loaded
8
polydl-lactic-co-glycolic acid
8
tissue regeneration
8
plga microspheres
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!