Weak interfilament van der Waals interactions are potentially a significant roadblock in the development of carbon nanotube- (CNT-) and graphene-based nanocomposites. Chemical functionalization is envisioned as a means of introducing stronger intermolecular interactions at nanoscale interfaces, which in turn could enhance composite strength. This paper reports measurements of the adhesive energy of CNT-graphite interfaces functionalized with various coverages of arylpropionic acid. Peeling experiments conducted in situ in a scanning electron microscope show significantly larger adhesive energies compared to previously obtained measurements for unfunctionalized surfaces (Roenbeck et al. ACS Nano 2014, 8 (1), 124-138). Surprisingly, however, the adhesive energies are significantly higher when both surfaces have intermediate coverages than when one surface is densely functionalized. Atomistic simulations reveal a novel functional group interdiffusion mechanism, which arises for intermediate coverages in the presence of water. This interdiffusion is not observed when one surface is densely functionalized, resulting in energy trends that correlate with those observed in experiments. This unique intermolecular interaction mechanism, revealed through the integrated experimental-computational approach presented here, provides significant insights for use in the development of next-generation nanocomposites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.5b01011DOI Listing

Publication Analysis

Top Keywords

adhesive energies
8
intermediate coverages
8
surface densely
8
densely functionalized
8
molecular-level engineering
4
engineering adhesion
4
adhesion carbon
4
carbon nanomaterial
4
nanomaterial interfaces
4
interfaces weak
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!