Introduction: Monocrotophos, implicated in about 1/4th of organophosphate poisonings in our centre, is associated with the highest mortality (24%). Yet data on its pharmacokinetics in humans is limited. We estimated the renal elimination half-life of monocrotophos.

Patients And Methods: Consecutive patients presenting with monocrotophos overdose over a 2-month period who had normal renal function were recruited. Monocrotophos in plasma and urine were quantitated by high-performance liquid chromatography. Urine was obtained from catheterised samples at 0-2, 2-4, 4-6, 6-8, 8-12 and 12-24 h. Plasma specimens were collected at the time of admission, and at the midpoint of the urine sample collections at 1, 3, 5, 7, 10, 15 and 21 h. Renal elimination half-life was calculated from the cumulative amount excreted in the urine.

Results: The cohort of 5 male patients, aged 35.8 ± 2.94 years, presented with typical organophosphate (cholinergic) toxidrome following intentional monocrotophos overdose. All patients required mechanical ventilation; one patient died. Plasma data was available from 5 patients and urine data from 3 patients. The median renal elimination half-life was 3.3 (range: 1.9-5.0 h). Plasma monocrotophos values, as natural log, fell in a linear fashion up to around 10 h after admission. After the 10-hour period, there was a secondary rise in values in all the 3 patients in whom sampling was continued after 10 h.

Conclusion: A renal elimination half-life of 3.3 h for monocrotophos is consistent with a water-soluble compound which is rapidly cleared from the plasma. The secondary rise in plasma monocrotophos values suggests possible re-distribution. Determining the elimination profile of this compound will help develop better strategies for treatment.

Download full-text PDF

Source
http://dx.doi.org/10.3109/15563650.2015.1054500DOI Listing

Publication Analysis

Top Keywords

renal elimination
20
elimination half-life
20
monocrotophos overdose
8
data patients
8
plasma monocrotophos
8
monocrotophos values
8
secondary rise
8
monocrotophos
7
renal
6
elimination
6

Similar Publications

Background: Over the last decade, the number of simultaneous heart-kidney transplants (SHKTs) has increased dramatically. There are few reports of renal allograft outcomes in these high acuity patients. The goal of the present study was to identify variables that were related to early adverse outcomes (EAOs), including delayed graft function (DGF), primary non-function (PNF), and renal allograft futility (RAF) after SHKTs.

View Article and Find Full Text PDF

The Gut Microbiome in Hyperuricemia and Gout.

Arthritis Rheumatol

January 2025

Assistant Professor of Pathology and of Microbiology and Microbiology and Immunology, Stanford University, Stanford, CA, 94305.

Humans develop hyperuricemia via decreased urate elimination and excess urate production, consequently promoting monosodium urate crystal deposition and incident gout. Normally, approximately two thirds of urate elimination is renal. However, chronic kidney disease (CKD) and other causes of decreased renal urate elimination drive hyperuricemia in most with gout.

View Article and Find Full Text PDF

Background: 7-Hydroxymethotrexate (7-OHMTX) is the main metabolite in plasma following high-dose MTX (HD-MTX), which may result in activity and toxicity of the MTX. Moreover, 7-OHMTX could produce crystalline-like deposits within the renal tubules under acidic conditions or induce renal inflammation, oxidative stress, and cell apoptosis through various signaling pathways, ultimately leading to kidney damage. The objectives of this study were thus to explore the exposure-safety relationship of two compounds and search the most reliable marker for predicting HDMTX nephrotoxicity.

View Article and Find Full Text PDF

Purpose: Tranexamic acid (TXA) is widely used as an antifibrinolytic drug. However, studies to determine the optimal blood concentration of TXA have produced inconsistent results. During cardiac surgery, cardiopulmonary bypass (CPB) has serious effects on drug distribution, elimination, and plasma concentration.

View Article and Find Full Text PDF

Direct oral anticoagulant (DOAC) use has significantly increased because major medical organizations endorse their role for conditions in which anticoagulation is indicated. Owing to important pharmacokinetic properties, the use of apixaban and rivaroxaban requires careful consideration in at-risk populations such as those with kidney disease. Both apixaban and rivaroxaban undergo some degree of renal elimination, and thus total drug exposure is increased in patients with renal insufficiency and/or those undergoing renal replacement therapy (RRT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!