In this work, we have developed an injectable and biodegradable material using CPC containing Fe3O4 nanoparticles for minimally invasive and efficiently magnetic hyperthermia ablation of tumors. When exposed to an alternating magnetic field, the MCPC could quickly generate heat. The temperature of PBS and the excised bovine liver increased with the MCPC weight, iron content, and time. The ablated liver tissue volume for 0.36 g of 10% MCPC was 0.2 ± 0.03, 1.01 ± 0.07, and 1.96 ± 0.19 cm(3), respectively, at the time point of 60, 180, and 300 s. In our in vivo experiment, the MCPC could be directly injected into the center of the tumors under the guidance of ultrasound imaging. The formed MCPC was well-restricted within the tumor tissues without leakage, and the tumors were completely ablated by 0.36 g of 10% injectable MCPC after 180 s of induction heating.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b02077DOI Listing

Publication Analysis

Top Keywords

magnetic hyperthermia
8
hyperthermia ablation
8
ablation tumors
8
036 10%
8
mcpc
6
tumors
4
tumors injectable
4
injectable fe₃o₄/calcium
4
fe₃o₄/calcium phosphate
4
phosphate cement
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!