Fanconi Anemia (FA) is an inherited disorder characterized by the variable presence of multiple congenital somatic abnormalities, bone marrow failure and cancer susceptibility. Medulloblastoma (MB) has been described only in few cases of FA with biallelic inactivation in the tumor suppressor gene BRCA2/FANCD1 or its associated gene PALB2/FANCN. We report the case of a patient affected by Fanconi Anemia with Wilms tumor and unusual presentation of two medulloblastomas (MB1 and MB2). We identified a new pathogenetic germline BRCA2 mutation: c.2944_2944delA. Molecular analysis of MBs allowed us to define new features of MB in FA. MBs were found to belong to the Sonic Hedgehog (SHH) molecular subgroup with some differences between MB1 and MB2. We highlighted that MB in FA could share molecular aspects and hemispheric localization with sporadic adult SHH-MB. Our report provides new findings that shed new light on the genetic and molecular pathogenesis of MB in FA patients with implications in the disease management.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4462002 | PMC |
http://dx.doi.org/10.1186/s40364-015-0038-z | DOI Listing |
DNA Repair (Amst)
January 2025
School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, Scotland. Electronic address:
Ubiquitin-specific protease 1 (USP1) is the founding member of the family of cysteine proteases that catalyse hydrolysis of the isopeptide bond between ubiquitin and targets. USP1 is often overexpressed in various cancers, and expression levels correlate with poor prognosis. USP1 and its partner USP1-associated Factor 1 (UAF1) are required for deubiquitinating monoubiquitin signals in DNA interstrand crosslink repair, and in Translesion synthesis, among others, and both proteins are subject to multiple regulations themselves.
View Article and Find Full Text PDFRegen Ther
March 2025
Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Science, Tehran, Iran.
Gene therapy (GT) as a groundbreaking approach holds promise for treating many diseases including immune deficiencies and blood disorders. GT can benefit patients suffering from these diseases, especially those without matched donors or who are at risk after hematopoietic stem cell transplantation (HSCT). Due to all the advances in the field of GT, its main challenge is still gene delivery.
View Article and Find Full Text PDFGenet Test Mol Biomarkers
January 2025
Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran.
Fanconi anemia (FA) is a rare genetic disorder that affects multiple systems in the body and is the most prevalent congenital syndrome, leading to bone marrow failure. Twenty-two genes have been identified as contributors to the disease. Significant advancements have been made in the past 2 decades in understanding the genetic and pathophysiological processes involved.
View Article and Find Full Text PDFJ Exp Med
March 2025
Department of Hematology, The Second Affiliated Hospital of Chongqing Medical University, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China.
Hematopoietic stem cells (HSCs) are susceptible to replication stress, which is a major contributor to HSC defects in Fanconi anemia (FA). Here, we report that HSCs relax the global chromatin by downregulating the expression of a chromatin architectural protein, DEK, in response to replication stress. DEK is abnormally accumulated in bone marrow (BM) CD34+ cells from patients with FA and in Fancd2-deficient HSCs.
View Article and Find Full Text PDFFam Cancer
January 2025
Division of Cancer Epidemiology and Genetics, Clinical Genetics Branch, National Cancer Institute, 9609 Medical Center Drive 6E434, Bethesda, MD, 20892, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!