We introduce a new concept of hybrid Na-based flow batteries (HNFBs) with a molten Na alloy anode in conjunction with a flowing catholyte separated by a solid Na-ion exchange membrane for grid-scale energy storage. Such HNFBs can operate at ambient temperature, allow catholytes to have multiple electron transfer redox reactions per active ion, offer wide selection of catholyte chemistries with multiple active ions to couple with the highly negative Na alloy anode, and enable the use of both aqueous and non-aqueous catholytes. Further, the molten Na alloy anode permits the decoupled design of power and energy since a large volume of the molten Na alloy can be used with a limited ion-exchange membrane size. In this proof-of-concept study, the feasibility of multi-electron transfer redox reactions per active ion and multiple active ions for catholytes has been demonstrated. The critical barriers to mature this new HNFBs have also been explored.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463013 | PMC |
http://dx.doi.org/10.1038/srep11215 | DOI Listing |
Chem Commun (Camb)
January 2025
Chemistry Division, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
This review discusses the properties of strongly oxidizing radicals in organic and aqueous media and highlights the challenges in obtaining accurate values of their reduction potentials. Transient redox equilibrium methods based on the use of strong photooxidants or initiated by pulse radiolysis are shown to provide versatile approaches for decoupling electron transfer reactions from follow-up reactivity of unstable radical species, resulting in accurate values of reduction potentials of very positive couples, including some solvent radical cations. We also show that correlations of reduction potentials with Hammett ∑+p parameters, as well as gas phase ionization potentials, can be used to estimate the redox properties of unknown couples within a homologous series of compounds.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.
One strategy for CO mitigation is using photosynthetic microorganisms to sequester CO under high concentrations, such as in flue gases. While elevated CO levels generally promote growth, excessively high levels inhibit growth through uncertain mechanisms. This study investigated the physiology of the cyanobacterium Synechocystis sp.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
Anode materials with high capacity and suitable redox potential are crucial for improving the energy density of aqueous sodium-ion batteries (ASIBs). And organic anode materials play a promising role due to their tunable electrochemical performance. However, the insufficient electroactive sites lead to a low capacity, hindering the elevation of energy density.
View Article and Find Full Text PDFJ Lipid Res
January 2025
Physiology and Pathophysiology of Cells and Membranes, Medical School OWL, Bielefeld University, Bielefeld, Germany. Electronic address:
The environmental pollutant cadmium (Cd) poses a threat to human health through consumption of contaminated foodstuffs culminating in chronic nephrotoxicity. Mitochondrial dysfunction and excessive reactive oxygen species (ROS) are key to Cd cellular toxicity. Cd-lipid interactions have been less considered.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.
This work uses MoTe single crystals to address the challenge in heterogeneous catalysis of identifying active sites and determining the electronic factors responsible for catalytic activity. We find that for semiconducting MoTe, spots that fall along step edges show more catalytic activity than spots that fall solely on the basal plane. In contrast, for a semimetallic phase of MoTe, there is no measurable difference between the H evolution activity at the step edges and at the basal plane, indicating that the active sites for H evolution catalysis on transition metal dichalcogenides are phase dependent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!