Y-junction carbon nanocoils (Y-CNCs) were synthesized by thermal chemical vapor deposition using Ni catalyst prepared by spray-coating method. According to the emerging morphologies of Y-CNCs, several growth models were advanced to elucidate their formation mechanisms. Regarding the Y-CNCs without metal catalyst in the Y-junctions, fusing of contiguous CNCs and a tip-growth mechanism are considered to be responsible for their formation. However, as for the Y-CNCs with catalyst presence in the Y-junctions, the formation can be ascribed to nanoscale soldering/welding and bottom-growth mechanism. It is found that increasing spray-coating time for catalyst preparation generates agglomerated larger nanoparticles strongly adhering to the substrate, resulting in bottom-growth of CNCs and appearance of the metal catalyst in the Y-junctions. In the contrary case, CNCs catalyzed by isolated smaller nanoparticles develop Y-junctions with an absence of metal catalyst by virtue of weaker adhesion of catalyst with the substrate and tip-growth of CNCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4462766PMC
http://dx.doi.org/10.1038/srep11281DOI Listing

Publication Analysis

Top Keywords

metal catalyst
12
y-junction carbon
8
carbon nanocoils
8
chemical vapor
8
vapor deposition
8
catalyst y-junctions
8
catalyst
7
nanocoils synthesis
4
synthesis chemical
4
formation
4

Similar Publications

Transition Metal-Coordinated Polymer Achieves Stable Seawater Oxidation over NiFe Layered Double Hydroxide.

Inorg Chem

January 2025

College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China.

Seawater electrolysis has emerged as a promising approach for the generation of hydrogen energy, but the production of deleterious chlorine derivatives (e.g., chloride and hypochlorite) presents a significant challenge due to the severe corrosion at the anode.

View Article and Find Full Text PDF

Structure and stability of copper nanoclusters on monolayer tungsten dichalcogenides.

Dalton Trans

January 2025

Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork, T12 R5CP, Ireland.

Layered materials, such as tungsten dichalcogenides (TMDs), are being studied for a wide range of applications, due to their unique and varied properties. Specifically, their use as either a support for low dimensional catalysts or as an ultrathin diffusion barrier in semiconductor devices interconnect structures are particularly relevant. In order to fully realise these possible applications for TMDs, understanding the interaction between metals and the monolayer they are deposited on is of utmost importance.

View Article and Find Full Text PDF

Zn(TFSI)-Mediated Ring-Opening Polymerization for Electrolyte Engineering Toward Stable Aqueous Zinc Metal Batteries.

Nanomicro Lett

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.

Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.

View Article and Find Full Text PDF

ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.

View Article and Find Full Text PDF

Catalytic H/D exchange of (hetero)arenes with early-late polyhydride heterobimetallic complexes: impact of transition metal pairs.

Dalton Trans

January 2025

Laboratory of Catalysis, Polymerization, Processes and Materials (CP2 M UMR 5128), CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.

Metal-catalyzed hydrogen isotope exchange (HIE) has become a valuable method for incorporating deuterium and tritium into organic molecules, with applications in a wide range of scientific fields. This study explores the role of transition metal cooperativity in enhancing catalytic hydrogen/deuterium (H/D) exchange using early-late heterobimetallic polyhydride (ELHB) complexes. A series of four ELHB complexes, of general formula [M(CHBu)(H)M'Cp*], combining early transition metals (M = Hf, Ta) with late metals (M' = Ir, Os), were synthesized and evaluated for their catalytic activity in HIE of (hetero)arenes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!