Abundance, distribution, movement patterns, and habitat selection of a reservoir species influence the dispersal of zoonotic pathogens, and hence, the risk for humans. Movements and microhabitat use of rodent species, and their potential role in the transmission of hantavirus were studied in Otamendi Natural Reserve, Buenos Aires, Argentina. Movement estimators and qualitative characteristics of rodent paths were determined by means of a spool and line device method. Sampling was conducted during November and December 2011, and March, April, June, October, and December 2012. Forty-six Oxymycterus rufus, 41 Akodon azarae, 10 Scapteromys aquaticus and 5 Oligoryzomys flavescens were captured. Movement patterns and distances varied according to sex, habitat type, reproductive season, and body size among species. O. flavescens, reservoir of the etiologic agent of hantavirus pulmonary syndrome in the region, moved short distances, had the most linear paths and did not share paths with other species. A. azarae had an intermediate linearity index, its movements were longer in the highland grassland than in the lowland marsh and the salty grassland, and larger individuals traveled longer distances. O. rufus had the most tortuous paths and the males moved more during the non-breeding season. S. aquaticus movements were associated with habitat type with longer distances traveled in the lowland marsh than in the salty grassland. Hantavirus antibodies were detected in 20% of A. azarae and were not detected in any other species. Seropositive individuals were captured during the breeding season and 85% of them were males. A. azarae moved randomly and shared paths with all the other species, which could promote hantavirus spillover events.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10393-015-1038-z | DOI Listing |
J Mammal
February 2024
School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell Street, Tucson, AZ 85721, United States.
Disturbance events are increasing at a global scale, with cascading impacts to ecosystems and residents therein that include fragmentation and altered vegetation structure and composition. Such changes may disproportionately impact small mammal movements, risk perception, and community dynamics as smaller species perceive such changes at finer spatial scales. We examined movement response to burn severity, vegetation structure, and composition in Mexican woodrats (), a common but understudied small mammal species.
View Article and Find Full Text PDFBMC Ecol Evol
October 2024
Department of Ecology and Vertebrate Zoology, University of Łódź, 12/16 Banacha Str, Łódź, 90-237, Poland.
J Exp Biol
August 2024
Field Research Station at Fort Missoula, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
Complex hydrodynamics abound in natural streams, yet the selective pressures these impose upon different size classes of fish are not well understood. Attached vortices are produced by relatively large objects that block freestream flow, which fish routinely utilize for flow refuging. To test how flow refuging and the potential harvesting of energy (as seen in Kármán gaiting) vary across size classes in rainbow trout (Oncorhynchus mykiss; fingerling, 8 cm; parr, 14 cm; adult, 22 cm; n=4 per size class), we used a water flume (4100 l; freestream flow at 65 cm s-1) and created vortices using 45 deg wing dams of varying size (small, 15 cm; medium, 31 cm; large, 48 cm).
View Article and Find Full Text PDFJ Med Entomol
September 2024
Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA.
Microenvironmental factors affect ovipositional choices and behavior in ticks. In this study, engorged female Amblyomma maculatum Koch were released in an observation arena covered with garden soil. The arena was evenly split into wet and dry sides, each containing 5 different types of structures (totaling 10).
View Article and Find Full Text PDFMar Pollut Bull
May 2024
School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK; Environmental Research Institute, School of Biology, Earth and Environmental Sciences, University College Cork, Cork, T23 N73K, Ireland.
Topographic complexity is often considered to be closely associated with habitat complexity and niche diversity; however, complex topography per se does not imply habitat suitability. Rather, ecologically suitable habitats may emerge if topographic features interact with environmental factors and thereby alter their surrounding microenvironment to the benefit of local organisms (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!