Emotions control evolutionarily-conserved behavior that is central to survival in a natural environment. Imbalance within emotional circuitries, however, may result in malfunction and manifestation of anxiety disorders. Thus, a better understanding of emotional processes and, in particular, the interaction of the networks involved is of considerable clinical relevance. Although neurobiological substrates of emotionally controlled circuitries are increasingly evident, their mutual influences are not. To investigate interactions between hunger and fear, we performed Pavlovian fear conditioning in fasted wild-type mice and in mice with genetic modification of a feeding-related gene. Furthermore, we analyzed in these mice the electrophysiological microcircuits underlying fear extinction. Short-term fasting before fear acquisition specifically impaired long-term fear memory, whereas fasting before fear extinction facilitated extinction learning. Furthermore, genetic deletion of the Y4 receptor reduced appetite and completely impaired fear extinction, a phenomenon that was rescued by fasting. A marked increase in feed-forward inhibition between the basolateral and central amygdala has been proposed as a synaptic correlate of fear extinction and involves activation of the medial intercalated cells. This form of plasticity was lost in Y4KO mice. Fasting before extinction learning, however, resulted in specific activation of the medial intercalated neurons and re-established the enhancement of feed-forward inhibition in this amygdala microcircuit of Y4KO mice. Hence, consolidation of fear and extinction memories is differentially regulated by hunger, suggesting that fasting and modification of feeding-related genes could augment the effectiveness of exposure therapy and provide novel drug targets for treatment of anxiety disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4579557PMC
http://dx.doi.org/10.1038/npp.2015.163DOI Listing

Publication Analysis

Top Keywords

fear extinction
24
fear
10
extinction
8
amygdala microcircuit
8
anxiety disorders
8
modification feeding-related
8
fasting fear
8
extinction learning
8
feed-forward inhibition
8
activation medial
8

Similar Publications

The elucidation of the functional neuroanatomy of human fear, or threat, extinction has started in the 2000s by a series of enthusiastically greeted functional magnetic resonance imaging (fMRI) studies that were able to translate findings from rodent research about an involvement of the ventromedial prefrontal cortex (vmPFC) and the hippocampus in fear extinction into human models. Enthusiasm has been painfully dampened by a meta-analysis of human fMRI studies by Fullana and colleagues in 2018 who showed that activation in these areas is inconsistent, sending shock waves through the extinction research community. The present review guides readers from the field (as well as non-specialist readers desiring safe knowledge about human extinction mechanisms) during a series of exposures with corrective information.

View Article and Find Full Text PDF

The number of opioid overdose deaths has increased over the past several years, mainly driven by an increase in the availability of highly potent synthetic opioids, like fentanyl, in the un-regulated drug supply. Over the last few years, changes in the drug supply, and in particular the availability of counterfeit pills containing fentanyl, have made oral use of opioids a more common route of administration. Here, we used a drinking in the dark (DiD) paradigm to model oral fentanyl self-administration using increasing fentanyl concentrations in male and female mice over 5 weeks.

View Article and Find Full Text PDF

Background: Post-traumatic stress disorder (PTSD) causes intrusive symptoms and avoidance behaviours due to dysregulation in various brain regions, including the hippocampus. Deep brain stimulation (DBS) shows promise for refractory PTSD cases. In rodents, DBS improves fear extinction and reduces anxiety-like behaviours, but its effects on active-avoidance extinction remain unexplored.

View Article and Find Full Text PDF

Treating anxiety comorbidity: lessons from exposure generalization studies.

Behav Brain Res

December 2024

Department of Behavioral and Clinical Neuroscience, Ruhr-University Bochum (RUB), Massenbergstraße 9-13, D-44787 Bochum, Germany.

Comorbidity is a characteristic hallmark of anxiety disorders. Presence of comorbid anxiety and depression is challenging to the diagnosis and treatment. Conventional and transdiagnostic treatment options for anxiety disorders strongly depend on the use of exposure.

View Article and Find Full Text PDF

The PAC1 receptor risk genotype does not influence fear acquisition, extinction, or generalization in no trauma/low trauma women.

Biol Psychol

December 2024

Departament de Psicobiologia i de Metodologia de les Ciències de la Salut, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain; Centro de Investigación Biomédica En Red en Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; ICREA, Barcelona, Spain. Electronic address:

Women are known to have twice as much lifetime prevalence of post-traumatic stress disorder (PTSD) as men do. It has been reported that the risk genotype (CC) of a single nucleotide polymorphism (SNP) (rs2267735) in the pituitary adenylate cyclase-activating polypeptide (PACAP-PAC1R) system is associated with PTSD risk and altered fear conditioning and fear extinction in women. Surprisingly, no previous work has studied the effect of this SNP on fear conditioning, extinction, or generalization in non-traumatized/low trauma load women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!