The anti-platelet drug clopidogrel has been shown to modulate adhesion molecule and cytokine expression, both playing an important role in the pathogenesis of atherosclerosis. The aim of this study was to investigate the impact of clopidogrel on the development and progression of atherosclerosis. ApoE(-/-) mice fed an atherogenic diet (cholesterol: 1 %) for 6 months received a daily dose of clopidogrel (1 mg/kg) by i.p. injection. Anti-platelet treatment was started immediately in one experimental group, and in another group clopidogrel was started 2 month after beginning of the atherogenic diet. Blood was analysed at days 30, 60 and 120 to monitor the lipid profile. After 6 months the aortic arch and brachiocephalic artery were analysed by Sudan IV staining for plaque size and by morphometry for luminal occlusion. Serum levels of various adhesion molecules were investigated by ELISA and the cellular infiltrate was analysed by immunofluorescence. After daily treatment with 1 mg/kg clopidogrel mice showed a significant reduction of atherosclerotic lesions in the thoracic aorta and within cross sections of the aortic arch [plaque formation 55.2 % (clopidogrel/start) vs. 76.5 % (untreated control) n = 8, P < 0.05]. After treatment with clopidogrel P-/E-selectin levels and cytokine levels of MCP-1 and PDGFβ were significantly reduced as compared to controls. The cellular infiltrate showed significantly reduced macrophage and T-cell infiltration in clopidogrel-treated animals. These results show that clopidogrel can effectively delay the development and progression of 'de-novo' atherosclerosis. However, once atherosclerotic lesions were already present, anti-platelet treatment alone did not result in reverse remodelling of these lesions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00380-015-0696-7DOI Listing

Publication Analysis

Top Keywords

atherogenic diet
8
aortic arch
8
clopidogrel
6
clopidogrel lowers
4
lowers development
4
development atherosclerosis
4
atherosclerosis apoe-deficient
4
apoe-deficient mice
4
mice vivo
4
vivo anti-platelet
4

Similar Publications

Consumption of phytosterols is a nutritional strategy employed to reduce cholesterol absorption, but recent research shows that their biological activity might go beyond cholesterol reduction for the treatment of metabolic dysfunction-associated fatty liver disease (MAFLD), and novel phytosterol formulations, such as submicron dispersions, could improve these effects. We explored the therapeutic activity of phytosterols, either formulated as submicron dispersions of phytosterols (SDPs) or conventional phytosterol esters (PEs), in a mouse model of MAFLD. MAFLD was induced in mice by atherogenic diet (AD) feeding.

View Article and Find Full Text PDF

Background/objectives: Hyperlipidemia is a serious risk factor for cardiovascular diseases and liver steatosis. In this work, we explored the effect of an herbal formula (CBF) containing immature pods and extracts on lipid metabolism disorders and lipoprotein-rich plasma (LRP) oxidation in mice.

Methods: The phenolic composition was determined using HPLC-DAD analysis.

View Article and Find Full Text PDF

Objectives: An efficient approach to monitor the risks associated with chronic diseases is to use a dietary diversity score (DDS). To our knowledge, there has been no study conducted on the correlation between DDS and cardiovascular risk factors in individuals with diabetes. Hence, the objective of this study is to ascertain the correlation between these traits.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) include atherosclerosis, which is an inflammatory disease of large and medium vessels that leads to atherosclerotic plaque formation. The key factors contributing to the onset and progression of atherosclerosis include the pro-inflammatory cytokines interferon (IFN)α and IFNγ and the pattern recognition receptor (PRR) Toll-like receptor 4 (TLR4). Together, they trigger the activation of IFN regulatory factors (IRFs) and signal transducer and activator of transcription (STAT)s.

View Article and Find Full Text PDF

The role of α-tocopherol in the prevention and treatment of Alzheimer's disease.

Mol Cell Biochem

January 2025

Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medical Sciences, University of Opole, Oleska 48, 45-052, Opole, Poland.

Scientific reports from various areas of the world indicate the potential role of tocopherols (vitamin E) in particular α-tocopherol in the prevention and therapy of Alzheimer's disease. The current phenomenon is related to the growing global awareness of eating habits and is also determined by the need to develop the prevention, management and therapy of Alzheimer's disease. This article is a review of current research on the action of the active form of vitamin E-α-tocopherol and its impact on the development and course of Alzheimer's disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!