Ion transport is fundamental for multiple physiological processes, including but not limited to pH regulation, calcification, and photosynthesis. Here, we investigated ion-transporting processes in tissues from the corals Acropora yongei and Stylophora pistillata, representatives of the complex and robust clades that diverged over 250 million years ago. Antibodies against complex IV revealed that mitochondria, an essential source of ATP for energetically costly ion transporters, were abundant throughout the tissues of A. yongei. Additionally, transmission electron microscopy revealed septate junctions in all cell layers of A. yongei, as previously reported for S. pistillata, as well as evidence for transcellular vesicular transport in calicoblastic cells. Antibodies against the alpha subunit of Na(+)/K(+)-ATPase (NKA) and plasma membrane Ca(2+)-ATPase (PMCA) immunolabeled cells in the calicoblastic epithelium of both species, suggesting conserved roles in calcification. However, NKA was abundant in the apical membrane of the oral epithelium in A. yongei but not S. pistillata, while PMCA was abundant in the gastroderm of S. pistillata but not A. yongei. These differences indicate that these two coral species utilize distinct pathways to deliver ions to the sites of calcification and photosynthesis. Finally, antibodies against mammalian sodium bicarbonate cotransporters (NBC; SLC4 family) resulted in strong immunostaining in the apical membrane of oral epithelial cells and in calicoblastic cells in A. yongei, a pattern identical to NKA. Characterization of ion transport mechanisms is an essential step toward understanding the cellular mechanisms of coral physiology and will help predict how different coral species respond to environmental stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.00052.2015 | DOI Listing |
Sci Total Environ
January 2025
Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany; Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA.
The pollution of marine environments with plastics, particularly microplastic (MP, i.e., plastic particles <5 mm), is a major threat to marine biota, including corals.
View Article and Find Full Text PDFiScience
December 2024
University of Applied Sciences Kaiserslautern, Integrative Biotechnology, Carl-Schurz-Str. 10-16, 66953 Pirmasens, Germany.
Cyanobacteria are the oldest photoautotrophic lineage that release oxygen during photosynthesis, an ability that possibly evolved as far as 3.5 billion years ago and changed the Earth's environment-both in water and on land. Linked to the mechanism of carbon accumulation by cyanobacteria during photosynthesis are their calcifying properties, a process of biologically mediated mineralization of CO by precipitation with calcium to CaCO.
View Article and Find Full Text PDFMar Environ Res
November 2024
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, Shandong, China. Electronic address:
PeerJ
September 2024
Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
Background: Low oxygen in marine environments, intensified by climate change and local pollution, poses a substantial threat to global marine ecosystems, especially impacting vulnerable coral reefs and causing metabolic crises and bleaching-induced mortality. Yet, our understanding of the potential impacts in tropical regions is incomplete. Furthermore, uncertainty surrounds the physiological responses of corals to hypoxia and anoxia conditions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2024
Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!