A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effect of Fractionated Irradiation on the Hippocampus in an Experimental Model. | LitMetric

Background: Ionizing radiation induces altered brain tissue homeostasis and can lead to morphological and functional deficits. The aim of the present study was to investigate the short-term and long-term effect of ionizing radiation on cell population resides adult rat hippocampus.

Materials And Methods: Adult male Wistar rats received whole- brain irradiation with fractionated doses of gamma rays (a total dose of 20 Gy) and were investigated 30 and 100 days later. A combination of Fluoro-Jade C histochemistry for visualization of degenerating neurons, immunohistochemistry for detection of astrocytes and confocal microscopy were used to quantify the neurodegenerative changes in the hippocampal dentate gyrus and CA1 subfield.

Results: A significant increase of Fluoro-Jade C labelled neurons was seen in both of investigated areas through the whole experiment, predominantly 30 days after irradiation. Non- significant decrease of GFAP- immunoreactive astrocytes was found in the hippocampal dentate gyrus and CA1 subfield until 100 days after irradiation.

Conclusion: Our recent results showed that radiation response of cell types resides the adult hippocampus may play contributory role in the development of adverse radiation-induced late effects.

Download full-text PDF

Source
http://dx.doi.org/10.14735/amko2015191DOI Listing

Publication Analysis

Top Keywords

ionizing radiation
8
resides adult
8
100 days
8
hippocampal dentate
8
dentate gyrus
8
gyrus ca1
8
fractionated irradiation
4
irradiation hippocampus
4
hippocampus experimental
4
experimental model
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!