Validating reference microRNAs for normalizing qRT-PCR data in bovine oocytes and preimplantation embryos.

BMC Dev Biol

Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3584, CM, Utrecht, The Netherlands.

Published: June 2015

Background: MicroRNAs (miRNAs) are small noncoding RNAs that act as post-transcriptional regulators of gene targets. Accurate quantification of miRNA expression using validated internal controls should aid in the understanding of their role in epigenetic modification of genome function. To date, most studies that have examined miRNA expression levels have used the global mean expression of all expressed genes or the expression of reference mRNAs or nuclear RNAs for normalization.

Results: We analyzed the suitability of a number of miRNAs as potential expression normalizers in bovine oocytes and early embryos, and porcine oocytes. The stages examined were bovine oocytes at the germinal vesicle (GV) and metaphase II stages, bovine zygotes, 2, 4 and 8 cell embryos, morulae and blastocysts, as well as porcine cumulus oocyte complexes, GV, metaphase I and II oocytes. qRT-PCR was performed to quantify expression of miR-93, miR-103, miR-26a, miR-191, miR-23b, Let-7a and U6 for bovine samples and miR-21, miR-26a, miR-93, miR-103, miR-148a, miR-182 and miR-191 for porcine oocytes. The average starting material for each sample was determined using specific standard curves for each primer set. Subsequently, geNorm and BestKeeper software were used to identify a set of stably expressed miRNAs. Stepwise removal to determine the optimum number of reference miRNAs identified miR-93 and miR-103 as the most stably expressed in bovine samples and miR-26a, miR-191 and miR-93 in porcine samples.

Conclusions: The combination of miR-93 and miR-103 is optimal for normalizing miRNA expression for qPCR experiments on bovine oocytes and preimplantation embryos; the preferred combination for porcine oocytes is miR-26a, miR-191 and miR-93.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4464232PMC
http://dx.doi.org/10.1186/s12861-015-0075-8DOI Listing

Publication Analysis

Top Keywords

bovine oocytes
16
mir-93 mir-103
16
mirna expression
12
porcine oocytes
12
mir-26a mir-191
12
oocytes
8
oocytes preimplantation
8
preimplantation embryos
8
bovine samples
8
stably expressed
8

Similar Publications

MT1/cAMP/PKA Pathway in Melatonin-Regulated Sperm Capacitation.

Reprod Sci

January 2025

College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.

Melatonin is mainly synthesized and secreted by pineal gland, and plays multiple functions, including its regulating effects on reproductive processes. Sperm capacitation is necessary for fertilization, but the effect of melatonin on mouse sperm capacitation remains to be elucidated. We thus investigated the roles of melatonin on capacitation by culturing the sperms from mouse cauda epididymis in the medium with different doses of melatonin.

View Article and Find Full Text PDF

Optimizing oocyte maturation and embryo culture media could enhance in vitro embryo production. The purpose of the present study was to investigate the role of supplementing one carbon metabolism (OCM) substrates and its cofactors (Cystine, Zinc, Betaine, B2, B3, B6, B12 and 5-methyltetrahydrofolate) in maturation and/or embryo culture media on the rate of blastocyst formation and pregnancy outcomes following the transfer of the resulting blastocysts in bovines. In the first experiment, 2537 bovine oocytes were recovered from slaughterhouse ovaries and then matured either in conventional maturation medium (IVM) or IVM supplemented with OCM substrates (Sup-IVM).

View Article and Find Full Text PDF

A limited number of female germ cells support reproduction in many mammals. The follicle, composed of oocytes and supporting granulosa cells, forms the basis of oogenesis. Crosstalk between oocytes and granulosa cells is essential for the formation, dormancy, re-awakening, and maturation of oocytes.

View Article and Find Full Text PDF

mTOR signaling mediates energy metabolic equilibrium in bovine and mouse oocytes during the ovulatory phase†.

Biol Reprod

January 2025

Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, National Center for International Research on Animal Genetics, Breeding and Reproduction, College of Animal Sciences and Technology/Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.

The mammalian target of rapamycin (mTOR) signaling pathway is activated by luteinizing hormone in preovulatory follicle. However, its impact on ovulation remains inadequately explored. Utilizing in vivo studies and in vitro fertilization, we demonstrated that the negative effect of inhibition of mTOR signaling by rapamycin on oocyte quality during the ovulatory phase, with a notable decrease in the total cell count of blastocysts, a reduction in gastrula size, and fetal degeneration on the 16th day of gestation while not affecting ovulated oocyte count or granulosa cell luteinization.

View Article and Find Full Text PDF

Effects of Intrauterine Isoproterenol Administration on Ovarian Follicular Development in Cows.

Vet Med Sci

January 2025

Department of Biochemistry, Faculty of Veterinary Medicine, Erzurum, Turkey.

Background: Isoproterenol (ISO) is a nonselective beta-adrenergic receptor agonist known for its vasodilatory effects. This experiment aims to investigate whether intrauterine ISO administration could alter vascular indices and follicular development in postpartum Holstein cows.

Objectives: The objectives are to evaluate the effects of intrauterine ISO administration on vascular changes and its impact on follicular development compared to placebo groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!