Structural basis for retroviral integration into nucleosomes.

Nature

1] Chromatin Structure and Mobile DNA, The Francis Crick Institute, Blanche Lane, South Mimms EN6 3LD, UK [2] Division of Medicine, Imperial College London, St-Mary's Campus, Norfolk Place, London W2 1PG, UK.

Published: July 2015

Retroviral integration is catalysed by a tetramer of integrase (IN) assembled on viral DNA ends in a stable complex, known as the intasome. How the intasome interfaces with chromosomal DNA, which exists in the form of nucleosomal arrays, is currently unknown. Here we show that the prototype foamy virus (PFV) intasome is proficient at stable capture of nucleosomes as targets for integration. Single-particle cryo-electron microscopy reveals a multivalent intasome-nucleosome interface involving both gyres of nucleosomal DNA and one H2A-H2B heterodimer. While the histone octamer remains intact, the DNA is lifted from the surface of the H2A-H2B heterodimer to allow integration at strongly preferred superhelix location ±3.5 positions. Amino acid substitutions disrupting these contacts impinge on the ability of the intasome to engage nucleosomes in vitro and redistribute viral integration sites on the genomic scale. Our findings elucidate the molecular basis for nucleosome capture by the viral DNA recombination machinery and the underlying nucleosome plasticity that allows integration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4530500PMC
http://dx.doi.org/10.1038/nature14495DOI Listing

Publication Analysis

Top Keywords

retroviral integration
8
viral dna
8
h2a-h2b heterodimer
8
integration
6
dna
5
structural basis
4
basis retroviral
4
integration nucleosomes
4
nucleosomes retroviral
4
integration catalysed
4

Similar Publications

Single-Cell Lineage Tracing and Clonal State-Fate Analysis.

Methods Mol Biol

January 2025

Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain.

Lineage tracing has significantly advanced our comprehension in many areas of biology, such as development or immunity, by precisely measuring cellular processes like migration, division, or differentiation across labeled cells and their progeny. Traditional recombinase-based prospective lineage tracing is limited by the need for a priori cell type information and is constrained in the numbers of clones it can simultaneously track. In this sense, clonal lineage tracing with integrated random barcodes offers a robust alternative, enabling researchers to label and track a vast array of cells and their progeny over time.

View Article and Find Full Text PDF

Long Noncoding RNA LINC02453 Inhibits HIV-1 Replication by Binding With SEC13 to Regulate the Viral Productive Cycle.

J Med Virol

December 2024

Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.

Emerging evidence underscores the pivotal role of long noncoding RNAs (lncRNAs) as crucial regulators within the HIV life cycle. However, the precise functions and detailed mechanisms by which lncRNAs operate in HIV-1 highly exposed but persistently seronegative (HESN) individuals remain currently unknown. Through RNA sequencing analysis of the HESN individual and the matched control, we identified potential lncRNAs.

View Article and Find Full Text PDF

Human Endogenous Retroviruses Expression in Autoimmunity.

Yale J Biol Med

December 2024

Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.

In relation to ancient infections, a substantial number of retroviral sequences with persistent immunogenic potential were integrated within the human genome (HERVs). Under physiological conditions, coding sequences from HERVs can participate in cell/tissue homeostasis and physiological functions in an epigenetically controlled manner. However, HERV expression is susceptible to contribute to various pathologies, including autoinflammatory and autoimmune disorders, when reprogrammed by exogenous stimuli such as drugs or microbial infections.

View Article and Find Full Text PDF

Recently approved adeno-associated viral (AAV) vectors for liver monogenic diseases haemophilia A and B are exemplifying the success of liver-directed viral gene therapy. In parallel, additional gene therapy strategies are rapidly emerging to overcome some inherent AAV limitations, such as the non-persistence of the episomal transgene in the rapidly growing liver and immune response. Viral integrating vectors such as in vivo lentiviral gene therapy and non-viral vectors such as lipid nanoparticles encapsulating mRNA (LNP-mRNA) are rapidly being developed, currently at the preclinical and clinical stages, respectively.

View Article and Find Full Text PDF

Engineered packaging cell line for the enhanced production of baboon-enveloped retroviral vectors.

Mol Ther Nucleic Acids

December 2024

Gene Therapy Program, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02115, USA.

The baboon endogenous retrovirus (BaEV) glycoprotein is superior to the commonly used vesicular stomatitis virus glycoprotein (VSVg) for retroviral gene transfer into resting hematopoietic stem cells and lymphocyte populations. The derivative BaEVRLess (lacking the R domain) produces higher viral titers compared with wild-type BaEV, but vector production is impaired by syncytia formation and cell death of the HEK293T cells due to the high fusogenic activity of the glycoprotein. This lowers viral titers, leads to increased batch-to-batch variability, and impedes the establishment of stable packaging cell lines essential for the economical production of viral supernatants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!