Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The lack of DNA sequence information for most non-model organisms impairs the design of primers that are universally applicable for the study of molecular polymorphisms in nuclear markers. Next-generation sequencing (NGS) techniques nowadays provide a powerful approach to overcome this limitation. We present a flexible and inexpensive method to identify large numbers of nuclear primer pairs that amplify in most Brassicaceae species. We first obtained and mapped NGS transcriptome sequencing reads from two of the distantly related Brassicaceae species, Cardamine hirsuta and Arabis alpina, onto the Arabidopsis thaliana reference genome, and then identified short conserved sequence motifs among the three species bioinformatically. From these, primer pairs to amplify coding regions (nuclear protein coding loci, NPCL) and exon-primed intron-crossing sequences (EPIC) were developed. We identified 2,334 universally applicable primer pairs, targeting 1,164 genes, which provide a large pool of markers as readily usable genomic resource that will help addressing novel questions in the Brassicaceae family. Testing a subset of the newly designed nuclear primer pairs revealed that a great majority yielded a single amplicon in all of the 30 investigated Brassicaceae taxa. Sequence analysis and phylogenetic reconstruction with a subset of these markers on different levels of phylogenetic divergence in the mustard family were compared with previous studies. The results corroborate the usefulness of the newly developed primer pairs, e.g., for phylogenetic analyses or population genetic studies. Thus, our method provides a cost-effective approach for designing nuclear loci across a broad range of taxa and is compatible with current NGS technologies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4465667 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0128181 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!