The synthesis and properties of a novel class of platinum complexes containing Schiff bases as O,N-bidentate ligands is described as are the solution and solid state properties of the uncomplexed ligands. The platinum complexes were prepared from [PtBr2(COD)] (COD = 1,5-cyclooctadiene) and N-(2-hydroxy-1-naphthalidene)aniline derivatives in the presence of base (NaOBu(t)). Instead of a substitution reaction to afford cationic species, the addition of the Schiff base ligands results in both the formal loss of two equivalents of bromide and addition of hydroxide to the COD ligand of the complexes. It is proposed that this reaction proceeds through a cationic platinum complex [Pt(N-O)(COD)]Br which then undergoes addition of water and loss of HBr. An example of a dinuclear platinum complex in which two cyclo-octene ligands are bridged by an ether linkage is also reported. The platinum complexes were evaluated as catalysts for the hydrogenative and dehydrogenative silylation of styrene, the resulting behaviour is substituent, time and temperature dependent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5dt01407g | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
Photoactivatable metal complexes offer the prospect of novel drugs with low side effects and new mechanisms of action to combat resistance to current therapy. We highlight recent progress in the design of platinum, ruthenium, iridium, gold and other transition metal complexes, especially for applications as anticancer and anti-infective agents. In particular, understanding excited state chemistry related to identification of the bioactive species (excited state metallomics/pharmacophores) is important.
View Article and Find Full Text PDFInorg Chem Front
January 2025
Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria +43 (0)1 40160-57557.
Platinum chemotherapy is part of every second anticancer treatment regimen. However, its application is limited by severe side effects and drug resistance. The combination of platinum-based chemotherapeutics with EGFR inhibitors has shown remarkable synergism in clinical treatment.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
Transition-metal dichalcogenides (TMDs), such as molybdenum disulfide (MoS), have emerged as a generation of nonprecious catalysts for the hydrogen evolution reaction (HER), largely due to their theoretical hydrogen adsorption energy close to that of platinum. However, efforts to activate the basal planes of TMDs have primarily centered around strategies such as introducing numerous atomic vacancies, creating vacancy-heteroatom complexes, or applying significant strain, especially for acidic media. These approaches, while potentially effective, present substantial challenges in practical large-scale deployment.
View Article and Find Full Text PDFChemistry
January 2025
The University of British Columbia, Department of Chemistry, 2036 Main Mall, V6T 1Z1, Vancouver, CANADA.
The field of platinum chemistry is ubiquitous in the research of anticancer drugs and new OLED materials. Within the vast library of existing compounds, the majority of work focuses on complexes in the +2 and +4 oxidation states, with comparatively few examples of PtIII complexes reported without bridging ligands. PtIII complexes with metal-metal bonding can be made by mild oxidation of PtII complexes having bis(phenylpyridine) ligands.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA.
The weak-link approach (WLA) to organometallic complexes offers a powerful method to create allosteric shape-shifting coordination complexes. However, chemically tuning the metal-ligand interactions entails challenging syntheses. This study explores the influence of ring strain on the lability of the platinum-sulfur interaction within WLA complexes, providing a simpler alternative to chemical modifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!