A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Negligible degradation upon in situ voltage cycling of a PEMFC using an electrospun niobium-doped tin oxide supported Pt cathode. | LitMetric

Negligible degradation upon in situ voltage cycling of a PEMFC using an electrospun niobium-doped tin oxide supported Pt cathode.

Phys Chem Chem Phys

Institut Charles Gerhardt, UMR CNRS 5253, Agrégats Interfaces Matériaux pour l'Energie, Université de Montpellier, 34095 Montpellier Cedex 5, France.

Published: July 2015

Novel platinum-catalysed, corrosion-resistant, loose-tube-structured electrocatalysts for proton exchange membrane fuel cells have been obtained using single-needle electrospinning associated with a microwave-assisted polyol method. Monodisperse platinum particles supported on Nb-SnO2 demonstrated higher electrochemical stability than conventional Pt/C electrodes during ex situ potential cycling and comparable activity in the oxygen reduction reaction. In situ fuel cell operation under accelerated stress test conditions of a membrane electrode assembly elaborated using a Pt/C anode and Pt/Nb-SnO2 cathode confirmed that the voltage loss is significantly lower for the novel cathode than for an MEA prepared using conventional Pt/C supported electrocatalysts. Furthermore, the Nb-SnO2 stabilised the supported platinum nanoparticles against dissolution, migration and reprecipitation in the membrane. Pt/Nb-SnO2 loose-tubes constitute a mitigation strategy for two known degradation mechanisms in PEMFC: corrosion of the carbon support at the cathode, and dissolution of Pt at high cell voltages.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp01542aDOI Listing

Publication Analysis

Top Keywords

conventional pt/c
8
negligible degradation
4
degradation situ
4
situ voltage
4
voltage cycling
4
cycling pemfc
4
pemfc electrospun
4
electrospun niobium-doped
4
niobium-doped tin
4
tin oxide
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!