Integrins are cell surface receptors for cell adhesion. Integrin-mediated cell adhesion regulates various cellular processes, including cell survival, migration, proliferation, and differentiation. In vivo, ligands for integrins are immobilized within extracellular matrices, insoluble sheet-like or fibrous supramolecular complexes that associate with or surround cells. To better understand the molecular basis of integrin-mediated regulation of cellular behavior in vivo, it is of critical importance to collect information regarding the activities as well as spatial distributions of integrin ligands in situ. This unit describes a protocol for detecting the spatial distribution of the complement of integrin ligands in situ by overlaying soluble recombinant integrins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/0471143030.cb0907s65 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Interdisciplinary Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
High-throughput measurement of cellular traction forces at the nanoscale remains a significant challenge in mechanobiology, limiting our understanding of how cells interact with their microenvironment. Here, we present a novel technique for fabricating protein nanopatterns in standard multiwell microplate formats (96/384-wells), enabling the high-throughput quantification of cellular forces using DNA tension gauge tethers (TGTs) amplified by CRISPR-Cas12a. Our method employs sparse colloidal lithography to create nanopatterned surfaces with feature sizes ranging from sub 100 to 800 nm on transparent, planar, and fully PEGylated substrates.
View Article and Find Full Text PDFJ Orthop Translat
January 2025
Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
Background: Bone marrow inflammaging is a low-grade chronic inflammation that induces bone marrow aging. Multiple age-related and inflammatory diseases involve bone marrow inflammaging. Whether common pathological pathways exist in bone marrow inflammaging remains unclear.
View Article and Find Full Text PDFMol Ther
January 2025
Department of Molecular Medicine, University of Southern Denmark; Odense, 5230, Denmark. Electronic address:
Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.
View Article and Find Full Text PDFBioorg Chem
January 2025
Institute for Advanced Study, Department of Chemistry, School of Natural Sciences and Bavarian NMR Center (BNMRZ), Technical University Munich, Ernst-Otto-Fischer-Str. 2, 85748 Garching, Germany. Electronic address:
Integrins are well-characterized receptors involved in cell adhesion and signaling. With six approved drugs, they are recognized as valuable therapeutic targets. Here, we explore potential activation mechanisms that may clarify the agonist versus antagonist behavior of integrin ligands.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Interventional Oncology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
Chimeric antigen receptor (CAR)-T cell therapies have revolutionized the landscape of cancer treatment, in particular in the context of hematologic malignancies. However, for solid tumors that lack tumor-specific antigens, CAR-T cells can infiltrate and attack nonmalignant tissues expressing the CAR target antigen, leading to on-target, off-tumor toxicity. Severe on-target, off-tumor toxicities have been observed in clinical trials of CAR-T therapy for solid tumors, highlighting the need to address this issue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!