Use of a rhodium catalyst with electron-rich and bulky chiral diphosphine ligands having C2-symmetry allowed efficient dehydrogenative silylation of the C(sp(2))-H bond of ferrocenes leading to chiral benzosiloloferrocenes. The substrate scope was expanded to hydrogermane and hydrosilanes having a ruthenocene backbone, which resulted in a new approach to benzosilole- and benzogermole-fused metallocenes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.5b01373 | DOI Listing |
Sci Bull (Beijing)
December 2024
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:
Divergent synthesis of valuable molecules through common starting materials and metal catalysis represents a longstanding challenge and a significant research goal. We here describe chemodivergent, highly enantio- and regioselective nickel-catalyzed reductive and dehydrogenative coupling reactions of alkynes, aldehydes, and silanes. A single chiral Ni-based catalyst is leveraged to directly prepare three distinct enantioenriched products (silyl-protected trisubstituted chiral allylic alcohols, oxasilacyclopentenes, and silicon-stereogenic oxasilacyclopentenes) in a single chemical operation.
View Article and Find Full Text PDFChem Commun (Camb)
September 2024
Faculty of Chemistry, Adam Mickiewicz University, Poznan, Uniwersytetu Poznanskiego St. 8, 61-614, Poznan, Poland.
Herein we report a strategy for the synthesis of organosilicons, including siloxanes, silyl ethers, and aminosilanes, Co-catalyzed dehydrogenative coupling between hydrosilanes and nucleophiles. This discovery represents an expansion of the synthetic toolkit for organosilicon synthesis, forging Si-O and Si-N bonds in the presence of cobalt complexes with salen-type ligands.
View Article and Find Full Text PDFChem Commun (Camb)
August 2024
Laboratorium für Organische Chemie, ETH Zürich, Vladimir Prelog Weg 3, HCI, 8093 Zürich, Switzerland.
We report the utilisation of an iodine(III) reagent to access α,β-unsaturated carbonyls from the corresponding silyl enol ethers of ketones and aldehydes, and from enol phosphates of lactones and lactams. The transformation is rapid, scalable, and can be carried out in one pot, directly dehydrogenating saturated carbonyls.
View Article and Find Full Text PDFOrg Lett
July 2024
School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China.
Selective dehydrogenative C-H silylation is one of the most powerful tools to synthesize silacycles. Herein, we developed Ru-catalyzed sequential hydrosilylation/C-H silylation of allyl-indoles and dehydrogenative O-H/C-H silylation of pyrrole phenols. Both six-membered indole silacycles and pyrrole silyl ether cycles were successfully synthesized with good functional group tolerance.
View Article and Find Full Text PDFMolecules
March 2024
Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, ND 58202, USA.
Polymer research is currently focused on sustainable and degradable polymers which are cheap, easy to synthesize, and environmentally friendly. Silicon-based polymers are thermally stable and can be utilized in various applications, such as columns and coatings. Poly(silyl ether)s (PSEs) are an interesting class of silicon-based polymers that are easily hydrolyzed in either acidic or basic conditions due to the presence of the silyl ether Si-O-C bond.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!