Industrial wastes with a high iron or aluminium oxide content are produced in huge quantities as by-products of water treatment (water treatment residuals), bauxite processing (red mud) and hard and brown coal burning in power plants (fly ash). Although they vary in their composition, the wastes have one thing in common--a high content of amorphous iron and/or aluminium oxides with a large specific surface area, whereby this group of wastes shows very good adsorbability towards heavy metals, arsenates, selenates, etc. But their physical form makes their utilisation quite difficult, since it is not easy to separate the spent sorbent from the solution and high bed hydraulic resistances occur in dynamic regime processes. Nevertheless, because of the potential benefits of utilising the wastes in industrial effluent treatment, this issue attracts much attention today. This study describes in detail the waste generation processes, the chemical structure of the wastes, their physicochemical properties, and the mechanisms of fixing heavy metals and semimetals on the surface of iron and aluminium oxides. Typical compositions of wastes generated in selected industrial plants are given. A detailed survey of the literature on the adsorption applications of the wastes, including methods of their thermal and chemical activation, as well as regeneration of the spent sorbents, is presented. The existing and potential ways of modifying the physical form of the discussed group of wastes, making it possible to overcome the basic limitation on their practical use, are discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0734242X15584841 | DOI Listing |
J Fluoresc
January 2025
Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaymaniyah, Kurdistan Regional Government, 46002, Iraq.
This study highlights the importance of developing sensitive and selective sensors for use in pharmaceutical applications for the first time. A novel iron(III)-complex, constructed from unsymmetrical tetradentate NNN'O type Schiff base ligand (E)-3-((6-aminopyridin-2-yl)imino)-1-phenyl butane-1-one (LH) and its structure of it characterized by using various spectroscopic techniques such as FT-IR, UV-Vis, elemental analysis, conductivity, magnetic susceptibility measurements and the TGA method. The correlation of all results revealed that the coordination of the (LH) with the metal ion in a molar ratio of 1:1 leads to the formation of an octahedral geometry around the metal ions.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Continental Dynamics, Northwest University, Xi'an, 710069, China.
Addressing loess salinisation is a crucial element in preserving ecological stability and fostering sustainable development in the northwest Loess Plateau. To investigate the impacts of salt solution on the properties of loess, independently designed salt solution-loess dynamic cyclic erosion equipment was used to soak the loess. Then, numerous tests were performed to analyse the variability of the effects of salt solution concentrations (SSC) and type, as well as the duration of soaking time, on these physico-mechanical properties.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Civil Engineering, College of Engineering, Qassim University, 51452, Buraidah, Saudi Arabia.
The increasingly concerning issue of water pollution caused by untreated leachate necessitates the implementation of effective wastewater treatment methods. This study addresses the crucial issue of landfill leachate treatment through an innovative and environmentally friendly approach that integrates electrolysis with palm-shell activated carbon contactors. The efficacy of an integrated process for pollutants removal was assessed involving electrolysis with aluminum and iron electrodes, activated carbon contactors with varying bed depths, and the influence of salinity.
View Article and Find Full Text PDFSci Rep
December 2024
Faculty of Mechanical Engineering, Opole University of Technology, Ul. Prószkowska 76, 45-758, Opole, Poland.
The study aimed to explore the potential use of coal-fired power plant bottom ashes in Pleurotus ostreatus cultivation using spent coffee grounds. The study analyzed five compositions of growth substrate for mushrooms: pure coffee grounds (I) as a control sample; coffee grounds substrate with the addition of 1% (II); 5% (III); 10% (IV) bottom ash; and bottom ash alone (V). The study revealed that compared to the control sample (I), the addition of 1% bottom ash (II) did not affect the time of mycelium growth but slowed fruiting body growth by 4 days.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Computer Engineering, Marwadi University, Rajkot, 360003, India.
The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!