Homeobox genes HOXA9 and MEIS1 are evolutionarily conserved transcription factors with essential roles in both hematopoiesis and leukemogenesis. They act as dominant cooperating oncoproteins that cause acute leukemias bearing MLL translocations and to a lesser extent T-cell acute lymphocytic leukemia (ALL) characterized by other gene fusions. Overexpression is associated with an adverse prognosis in adults. In childhood, the genes have only been investigated in leukemias bearing MLL translocations. The aim of this study was to determine whether overexpression extends to leukemic subtypes other than the MLL-positive subtype in childhood. We use quantitative real-time PCR methodology to investigate gene expression in 100 children with acute leukemias and compare them to those of healthy controls. We show that abnormally high HOXA9 and MEIS1 gene expression is associated with a variety of leukemic subtypes, including various maturation stages of B-cell ALL and cytogenetic types other than the MLL-positive population, thus suggesting that the genes are implicated in the development of a broad range of leukemic subtypes in childhood. In addition, we show that HOXA9 and MEIS1 overexpression are inversely correlated with relapse and overall survival, so the genes could become useful predictive markers of the clinical course of pediatric acute leukemias.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.leukres.2015.04.012DOI Listing

Publication Analysis

Top Keywords

hoxa9 meis1
16
acute leukemias
16
leukemic subtypes
12
meis1 gene
8
relapse survival
8
leukemias bearing
8
bearing mll
8
mll translocations
8
gene expression
8
acute
5

Similar Publications

Introduction: -rearrangements define a subclass of acute leukemias characterized by a distinct gene expression signature linked to the dysfunctional oncogenic fusion proteins arising from various chromosomal translocations involving the (also known as ) gene. Research on the disease pathomechanism in -rearranged acute leukemias has mainly focused on the upregulation of the stemness-related genes of the -family and their co-factor .

Results: Here we report the and fusion gene-dependent downregulation of , a TGF-β signaling axis transcription factor.

View Article and Find Full Text PDF

Oncogenic role of RARG rearrangements in acute myeloid leukemia resembling acute promyelocytic leukemia.

Nat Commun

January 2025

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Acute myeloid leukemia (AML) featuring retinoic acid receptor-gamma (RARG) rearrangements exhibits morphological features resembling those of acute promyelocytic leukemia but is associated with drug resistance and poor clinical outcomes. However, the mechanisms underlying the role of RARG fusions in leukemogenesis remain elusive. Here, we show that RARG fusions disrupt myeloid differentiation and promote proliferation and self-renewal of hematopoietic stem and progenitor cells (HSPCs) by upregulating BCL2 and ATF3.

View Article and Find Full Text PDF
Article Synopsis
  • TIFAB (TRAF-interacting protein with forkhead-associated domain B) is an inhibitor of NF-kB signaling that plays significant roles in blood cell production and various blood cancers, including acute myeloid leukemia (AML).
  • The study finds that deleting TIFAB in AML negatively affects leukemia stem/progenitor cell function, glucose consumption, and mitochondrial activity, while gene analysis shows reduced activity in key pathways such as MYC and glycolysis.
  • HNF4A emerges as a crucial target of TIFAB, and restoring HNF4A levels can counteract the metabolic issues linked to TIFAB deficiency, emphasizing the importance of the TIFAB-HNF4A relationship in AML progression.
View Article and Find Full Text PDF

Unraveling MLL1-fusion leukemia: Epigenetic revelations from an iPS cell point mutation.

J Biol Chem

November 2024

Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States. Electronic address:

Our understanding of acute leukemia pathology is heavily dependent on 11q23 chromosomal translocations involving the mixed lineage leukemia-1 (MLL1) gene, a key player in histone H3 lysine 4 (H3K4) methylation. These translocations result in MLL1-fusion (MLL1) proteins that are thought to drive leukemogenesis. However, the mechanism behind increased H3K4 trimethylation in MLL1-leukemic stem cells (MLL1-LSCs), following loss of the catalytic SET domain of MLL1 (known for H3K4 monomethylation and dimethylation) remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists have been using special medicines called nucleoside analogs, like cytarabine, to treat a type of blood cancer called acute myeloid leukemia (AML) for many years.
  • However, some patients don’t respond well to these medicines because their cancer cells become resistant to treatment.
  • Researchers discovered that a protein named HERC1 affects how well these medicines work, and targeting HERC1 could help improve AML treatments in the future.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!