Homeobox genes HOXA9 and MEIS1 are evolutionarily conserved transcription factors with essential roles in both hematopoiesis and leukemogenesis. They act as dominant cooperating oncoproteins that cause acute leukemias bearing MLL translocations and to a lesser extent T-cell acute lymphocytic leukemia (ALL) characterized by other gene fusions. Overexpression is associated with an adverse prognosis in adults. In childhood, the genes have only been investigated in leukemias bearing MLL translocations. The aim of this study was to determine whether overexpression extends to leukemic subtypes other than the MLL-positive subtype in childhood. We use quantitative real-time PCR methodology to investigate gene expression in 100 children with acute leukemias and compare them to those of healthy controls. We show that abnormally high HOXA9 and MEIS1 gene expression is associated with a variety of leukemic subtypes, including various maturation stages of B-cell ALL and cytogenetic types other than the MLL-positive population, thus suggesting that the genes are implicated in the development of a broad range of leukemic subtypes in childhood. In addition, we show that HOXA9 and MEIS1 overexpression are inversely correlated with relapse and overall survival, so the genes could become useful predictive markers of the clinical course of pediatric acute leukemias.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.leukres.2015.04.012 | DOI Listing |
Front Oncol
January 2025
Department of Medical Oncology and Hematology, University of Zurich and University Hospital Zurich, Zurich, Switzerland.
Introduction: -rearrangements define a subclass of acute leukemias characterized by a distinct gene expression signature linked to the dysfunctional oncogenic fusion proteins arising from various chromosomal translocations involving the (also known as ) gene. Research on the disease pathomechanism in -rearranged acute leukemias has mainly focused on the upregulation of the stemness-related genes of the -family and their co-factor .
Results: Here we report the and fusion gene-dependent downregulation of , a TGF-β signaling axis transcription factor.
Nat Commun
January 2025
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
Acute myeloid leukemia (AML) featuring retinoic acid receptor-gamma (RARG) rearrangements exhibits morphological features resembling those of acute promyelocytic leukemia but is associated with drug resistance and poor clinical outcomes. However, the mechanisms underlying the role of RARG fusions in leukemogenesis remain elusive. Here, we show that RARG fusions disrupt myeloid differentiation and promote proliferation and self-renewal of hematopoietic stem and progenitor cells (HSPCs) by upregulating BCL2 and ATF3.
View Article and Find Full Text PDFBlood Adv
December 2024
Case Western Reserve University, Cleveland, Ohio, United States.
J Biol Chem
November 2024
Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States. Electronic address:
Our understanding of acute leukemia pathology is heavily dependent on 11q23 chromosomal translocations involving the mixed lineage leukemia-1 (MLL1) gene, a key player in histone H3 lysine 4 (H3K4) methylation. These translocations result in MLL1-fusion (MLL1) proteins that are thought to drive leukemogenesis. However, the mechanism behind increased H3K4 trimethylation in MLL1-leukemic stem cells (MLL1-LSCs), following loss of the catalytic SET domain of MLL1 (known for H3K4 monomethylation and dimethylation) remains unclear.
View Article and Find Full Text PDFBlood Adv
October 2024
Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!