A specific immune response to human papillomavirus (HPV) in the cervical microenvironment plays a key role in eradicating infection and eliminating mutated cells. However, high-risk HPVs modulate immune cells to create an immunosuppressive microenvironment, and induce these immune cells to produce interleukin 10 (IL-10). This production of IL-10, in conjunction with HPV infection, contributes to the appearance of cervical neoplastic lesions. We sought to characterize the IL-10-producing cellular phenotype, and investigate the influence of host and HPV factors upon the induction of an immunosuppressive microenvironment. Immunohistochemical analysis demonstrated an increase in IL-10 production by keratinocytes, macrophages and Langerhans cells in high-grade cervical lesions and cervical cancer. This increase was more pronounced in patients older than 30 years, and was also correlated with high viral load, and infection with a single HPV type, particularly high-risk HPVs. Our results indicate the existence of a highly immunosuppressive microenvironment composed of different IL-10-producing cellular phenotypes in cervical cancer samples, and samples classified as high-grade cervical lesions (cervical intraepithelial neoplasia stages II and III). The immunosuppressive microenvironment that developed for these different cellular phenotypes favours viral persistence and neoplastic progression.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552506 | PMC |
http://dx.doi.org/10.1111/imm.12487 | DOI Listing |
Breast Cancer Res
January 2025
Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA.
Background: Epidemiological studies associate an increase in breast cancer risk, particularly triple-negative breast cancer (TNBC), with lack of breastfeeding. This is more prevalent in African American women, with significantly lower rate of breastfeeding compared to Caucasian women. Prolonged breastfeeding leads to gradual involution (GI), whereas short-term or lack of breastfeeding leads to abrupt involution (AI) of the breast.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Molecular Medicine, Inha University, Incheon, Republic of Korea.
Conventional chemotherapy- and radiotherapy-induced cancer senescence, which is characterized by poor proliferation, drug resistance, and senescence-associated secretory phenotype, has gained attention as contributing to cancer relapse and the development of an immunosuppressive tumor microenvironment. However, the association between cancer senescence and anti-tumor immunity is not fully understood. Here, we demonstrate that senescent cancer cells increase the level of PD-L1 by promoting its transcription and glycosylation.
View Article and Find Full Text PDFTrends Endocrinol Metab
January 2025
Department of Urology, Emory University School of Medicine, Atlanta, GA, USA; Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA. Electronic address:
Prostate cancer (PC) is a notoriously immune-cold tumor in that it often lacks substantial infiltration by antitumor immune cells, and in advanced diseases such as neuroendocrine PC, it could be devoid of immune cells. A majority of PC patients thus have, unfortunately, been unable to benefit from recent advances in immunotherapies. What causes this immunosuppressive microenvironment around PC? In this review, we discuss various genetic and epigenetic regulators intrinsic to prostate tumor cells that could have profound effects on the tumor microenvironment, thus contributing to this immune-cold status.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Medical University, Hefei, Anhui 230032, China; Institute of Clinical Immunology, Anhui Medical University, Hefei, Anhui 230032, China. Electronic address:
Chimeric antigen receptor T (CAR-T) cells represent a promising approach for cancer immunotherapy, yet their efficacy is hindered by immunosuppressive signals in the tumor microenvironment. Casitas B-cell lymphoma protein b (Cbl-b) is a key negative regulator of T cell function. This study investigated whether inhibiting Cbl-b enhances the antitumor activity of human CAR-T cells.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Chicago Division of the Physical Sciences, chemistry, UNITED STATES OF AMERICA.
Immune checkpoint blockade (ICB) has revolutionized the treatment of many cancers by leveraging the immune system to combat malignancies. However, its efficacy is limited by the immunosuppressive tumor microenvironment and other regulatory mechanisms of the immune system. Innate immune modulators (IIMs) provide potent immune activation to complement adaptive immune responses and help overcome resistance to ICB.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!