Chromosomal abnormalities are an important factor in the pathogenesis of congenital diaphragmatic hernia (CDH), a relatively common congenital defect associated with high morbidity and mortality. The adoption of array-based platforms for chromosome analysis has resulted in the identification of numerous copy number variants (CNVs) in infants with CDH, highlighting the potential pathogenic role of many novel genes. We identified a retrospective cohort of 28 infants treated for CDH at a single institution who had microarray testing to determine the proportion of microarray abnormalities and whether these were contributory to CDH pathogenesis. Eight patients (29%) had microarray abnormality. Seven (25%) were considered likely contributory to CDH pathogenesis, including two mosaic trisomy 9s, a 9q22.31q22.32 microduplication, two atypical 22q11.21 microdeletions, a 2q35q36.1 microdeletion, and a 15q11.2 microdeletion, offering insights into the genetic mechanisms underlying CDH development.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.37177DOI Listing

Publication Analysis

Top Keywords

microarray abnormalities
8
cohort infants
8
congenital diaphragmatic
8
diaphragmatic hernia
8
contributory cdh
8
cdh pathogenesis
8
cdh
6
snp microarray
4
abnormalities cohort
4
infants congenital
4

Similar Publications

Background: Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting.

View Article and Find Full Text PDF

Long non-coding RNA OSTM1-AS1 promotes renal cell carcinoma progression by sponging miR-491-5p and upregulating MMP-9.

Sci Rep

January 2025

Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.

Long noncoding RNAs (lncRNAs) have been recognized as essential regulators in various human malignancies. Hundreds of lncRNAs were known to be abnormally expressed in renal cell carcinoma (RCC) through a lncRNA expression microarray, among which lncRNA OSTM1 antisense RNA 1(OSTM1-AS1) was revealed as one of the most abundant lncRNAs. However, the function of OSTM1-AS1 in RCC remains unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Atrial fibrillation (AF) is influenced by both genetics and the environment, and existing genetic studies have identified numerous genes associated with AF, but their functions and interactions remain unclear.
  • Researchers conducted a detailed analysis of 254 AF-associated genes, revealing significant biological pathways related to heart activity and connections to diseases like cancer and inflammation through pathway crosstalk.
  • They also identified 24 novel genes potentially linked to AF, with six showing differential expression in AF patients, suggesting a common genetic basis between AF and other diseases, which could aid in discovering additional AF risk factors.
View Article and Find Full Text PDF

A Narrative Review of Molecular, Immunohistochemical and In-Situ Techniques in Dermatopathology.

Br J Biomed Sci

January 2025

St. John's Dermatopathology Laboratory, Synnovis Analytics, St. Thomas' Hospital, London, United Kingdom.

Article Synopsis
  • Skin disorders are a major global health issue, affecting millions and requiring improved understanding and treatment approaches.
  • Recent advancements in molecular techniques, like PCR and next-generation sequencing, have enhanced our ability to diagnose and treat these disorders accurately and effectively.
  • These technologies allow for precise identification of infectious agents, genetic mutations, and gene expression patterns, leading to personalized therapies and better management of conditions like skin cancer and infections.
View Article and Find Full Text PDF

Background: Cold inducible RNA-binding protein (CIRP) is an important danger-associated molecular pattern involved in tissue-specific and systemic inflammation related to inflammation and Alzheimer's disease (AD). However, the precise roles and mechanism of CIRP in the functional changes in astrocytes during the development of AD are still unknown. This study aimed to assess gene expression alterations in astrocytes after they overexpress CIRP (oe-CIRP) and to explore the relationship between abnormal CIRP expression and AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!