Chromosomal abnormalities are an important factor in the pathogenesis of congenital diaphragmatic hernia (CDH), a relatively common congenital defect associated with high morbidity and mortality. The adoption of array-based platforms for chromosome analysis has resulted in the identification of numerous copy number variants (CNVs) in infants with CDH, highlighting the potential pathogenic role of many novel genes. We identified a retrospective cohort of 28 infants treated for CDH at a single institution who had microarray testing to determine the proportion of microarray abnormalities and whether these were contributory to CDH pathogenesis. Eight patients (29%) had microarray abnormality. Seven (25%) were considered likely contributory to CDH pathogenesis, including two mosaic trisomy 9s, a 9q22.31q22.32 microduplication, two atypical 22q11.21 microdeletions, a 2q35q36.1 microdeletion, and a 15q11.2 microdeletion, offering insights into the genetic mechanisms underlying CDH development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.a.37177 | DOI Listing |
Clin Chem
January 2025
Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, United States.
Background: Structural variation (SV), defined as balanced and unbalanced chromosomal rearrangements >1 kb, is a major contributor to germline and neoplastic disease. Large variants have historically been evaluated by chromosome analysis and now are commonly recognized by chromosomal microarray analysis (CMA). The increasing application of genome sequencing (GS) in the clinic and the relatively high incidence of chromosomal abnormalities in sick newborns and children highlights the need for accurate SV interpretation and reporting.
View Article and Find Full Text PDFSci Rep
January 2025
Translational Research Laboratory for Urology, The Key Laboratory of Ningbo City, Ningbo Clinical Research Center for Urological Disease, Comprehensive Urogenital Cancer Center, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Ningbo, 315010, Zhejiang, China.
Long noncoding RNAs (lncRNAs) have been recognized as essential regulators in various human malignancies. Hundreds of lncRNAs were known to be abnormally expressed in renal cell carcinoma (RCC) through a lncRNA expression microarray, among which lncRNA OSTM1 antisense RNA 1(OSTM1-AS1) was revealed as one of the most abundant lncRNAs. However, the function of OSTM1-AS1 in RCC remains unknown.
View Article and Find Full Text PDFCardiovasc Ther
January 2025
Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
Br J Biomed Sci
January 2025
St. John's Dermatopathology Laboratory, Synnovis Analytics, St. Thomas' Hospital, London, United Kingdom.
Degener Neurol Neuromuscul Dis
December 2024
Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing, 100853, People's Republic of China.
Background: Cold inducible RNA-binding protein (CIRP) is an important danger-associated molecular pattern involved in tissue-specific and systemic inflammation related to inflammation and Alzheimer's disease (AD). However, the precise roles and mechanism of CIRP in the functional changes in astrocytes during the development of AD are still unknown. This study aimed to assess gene expression alterations in astrocytes after they overexpress CIRP (oe-CIRP) and to explore the relationship between abnormal CIRP expression and AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!