Purpose: In neuroblastoma, activating ALK receptor tyrosine kinase point mutations play a major role in oncogenesis. We explored the potential occurrence of ALK mutations at a subclonal level using targeted deep sequencing.
Experimental Design: In a clinically representative series of 276 diagnostic neuroblastoma samples, exons 23 and 25 of the ALK gene, containing the F1174 and R1275 mutation hotspots, respectively, were resequenced with an extremely high depth of coverage.
Results: At the F1174 hotspot (exon 23), mutations were observed in 15 of 277 samples (range of fraction of mutated allele per sample: 0.562%-40.409%). At the R1275 hotspot (exon 25), ALK mutations were detected in 12 of 276 samples (range of fraction of mutated allele: 0.811%-73.001%). Altogether, subclonal events with a mutated allele fraction below 20% were observed in 15/27 ALK-mutated samples. The presence of an ALK mutation was associated with poorer 5-year overall survival (OS: 75% vs. 57%, P = 0.0212 log-rank test), with a strong correlation between F1174 ALK mutations and MYCN amplification being observed.
Conclusions: In this series, deep sequencing allows the detection of F1174 and R1275 ALK mutational events at diagnosis in 10% of cases, with subclonal events in more than half of these, which would have gone undetected by Sanger sequencing. These findings are of clinical importance given the potential role of ALK mutations in clonal evolution and relapse. These findings also demonstrate the importance of deep sequencing techniques for the identification of patients especially when considering targeted therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/1078-0432.CCR-15-0423 | DOI Listing |
Neoplasia
December 2024
Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan.
Leptomeningeal metastasis (LM) is a challenging complication of non-small cell lung cancer (NSCLC). Cerebrospinal fluid (CSF) cell-free DNA (cfDNA) analysis using next-generation sequencing (NGS) offers insights into resistance mechanisms and potential treatment strategies. We conducted a study from February 2022 to April 2023 involving patients from five hospitals in Taiwan who had recurrent or advanced NSCLC with LM.
View Article and Find Full Text PDFBMC Palliat Care
December 2024
Division of Radiation Oncology, Tom Baker Cancer Centre, 1331 29 Street NW, Calgary, T2N 4N2, Alberta, Canada.
Pathol Res Pract
December 2024
Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA; Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY, USA. Electronic address:
Background: Adenocarcinoma of the esophagus and stomach demands a deeper molecular understanding to advance treatment strategies and improve patient outcomes. Here, we profiled the genome and transcriptome landscape of these cancers, explored molecular characteristics that are undetectable by other sequencing platforms, and analyzed their potential clinical ramifications.
Methods: Our study employed state-of-the-art integrative analyses of whole genome and transcriptome sequencing on 51 matched tumor and germline samples from 46 patients.
Thorac Cancer
December 2024
Department of Thoracic Surgery, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Introduction: To identify high-risk patients for recurrence in resected stage IA lung adenocarcinoma and evaluate the impact of adjuvant chemotherapy (ACT) on their prognosis, as well as explore potential novel adjuvant therapies.
Methods: Consecutive stage IA patients with ≥ 5% solid or micropapillary subtypes were analyzed. A nomogram was developed using Cox proportional hazards regression to predict recurrence-free survival (RFS).
Transl Cancer Res
November 2024
Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
Background: Tumor suppressors are well known drivers of cancer invasion and metastasis in metastatic castration sensitive prostate cancer (mCSPC). However, oncogenes are also known to be altered in this state, however the frequency and prognosis of these alterations are unclear. Thus, we aimed to study the spectrum of oncogene mutations in mCSPC and study the significance of these alteration on outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!