Across the foot sole, there are vibration and monofilament sensory differences despite an alleged even distribution of cutaneous afferents. Mechanical property differences across foot sole sites have been proposed to account for these differences. Vibration (VPT; 3 Hz, 40 Hz, 250 Hz), and monofilament (MF) perception threshold measurements were compared with skin hardness, epidermal thickness, and stretch response across five foot sole locations in young healthy adults (n = 22). Perceptual thresholds were expected to correlate with all mechanical property measurements to help address sensitivity differences between sites. Following this hypothesis, the MedArch was consistently found to be the thinnest and softest site and demonstrated the greatest sensitivity. Conversely, the Heel was found to be the thickest and hardest site, and was relatively insensitive across perceptual tests. Site differences were not observed for epidermal stretch response measures. Despite an apparent trend of elevated sensory threshold at harder and thicker sites, significant correlations between sensitivity measures and skin mechanical properties were not observed. Skin hardness and epidermal thickness appeared to have a negligible influence on VPT and minor influence on MF within this young healthy population. When normalized (% greater or smaller than subject mean) to the subject mean for each variable, significant positive correlations were observed between MF and skin hardness (R(2) = 0.422, P < 0.0001) and epidermal thickness (R(2) = 0.433, P < 0.0001) providing evidence that skin mechanics can influence MF threshold. In young healthy adults, differences in sensitivity are present across the foot sole, but cannot solely be accounted for by differences in the mechanical properties of the skin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510627PMC
http://dx.doi.org/10.14814/phy2.12425DOI Listing

Publication Analysis

Top Keywords

foot sole
16
skin hardness
12
mechanical properties
8
mechanical property
8
hardness epidermal
8
epidermal thickness
8
stretch response
8
young healthy
8
observed skin
8
skin
5

Similar Publications

Introduction: Medial open wedge-high tibial osteotomy (MOW-HTO) is a standard procedure for treating moderate varus arthritis in active adults. The reason for its popularity is having lesser complications than other types of HTO. However, it is not devoid of challenges.

View Article and Find Full Text PDF

Rate of torque development (RTD) measures how rapidly one can generate torque and is crucial for balance and athletic performance. Fast RTD depends on the rapid recruitment of high threshold motor units (MUs). Cutaneous electrical stimulation has been shown to alter MU excitability, favoring high threshold MUs via reduced recruitment thresholds.

View Article and Find Full Text PDF

Following lower limb amputation residuum skin from the lower leg is used to reconstruct the residual limb. Unlike skin on the sole of the foot (plantar skin), leg skin is not inherently load bearing. Despite this, leg skin is required to be load bearing in the prosthetic socket.

View Article and Find Full Text PDF

Purpose: The present study is to explore the appropriate plantar support force for its effect on improving the collapse of the medial longitudinal arch with flexible flatfoot.

Methods: A finite element model with the plantar fascia attenuation was constructed simulating as flexible flatfoot. The appropriate plantar support force was evaluated.

View Article and Find Full Text PDF

Introduction: The severity of electrical injuries depends on the voltage, the duration of exposure to current, and the trajectory of the current through the body. The reconstruction for defects caused by electric current is a difficult process.

Objective: The purpose of this study is to investigate the effectiveness of the reverse first dorsal metatarsal artery (FDMA) flap in the reconstruction of distal foot injuries caused by electric currents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!