Introduction: Diabetes mellitus (DM) is associated with memory and learning deficits. Evidence has been provided that vitamin D is involved in brain function. The aim of the present study was to determine the potential effect of vitamin D on acquisition and retention of memory and learning in streptozotocin (STZ)-induced diabetic mice.
Methods: Experiments were performed in four groups of mice (each group; n = 7). Male mice were induced to diabetes by single dose (60 mg/kg, i.p.) injection of freshly prepared STZ dissolved in cold normal saline. Treatment with vitamin D (5µg/kg daily, i.p. dissolved in tween80) was begun at three days after diabetes induction. Passive avoidance (PA) learning method was used four weeks later. Retrieval test was carried out 24 h after training.
Results: Our results demonstrate significant impairment in acquisition and retrieval processes of PA learning in STZ- induced diabetic mice. Treatment with vitamin D improved learning and memory compared to the control group, both in acquisition and retrieval stages and reversed learning deficits in diabetic mice. In acquisition test, there were significant differences in the initial latency among the DM+Vit. D treated and control groups (P < 0.05). There was a significant difference in step-through latency between diabetic group treated with vitamin D compared to diabetic non-treated groups (P < 0.05).
Conclusion: It is possible that the effects of Vitamin D on cognitive deficits in STZ-induced diabetic mice could be mediated through calcium homeostasis modulation. These findings suggest a potential role for vitamin D in the treatment of diabetes-associated cognition deficits. The positive effect of vitamin D on the avoidance task may be attributed to its neuronal protective roles metabolic regulating roles of prolonged vitamin D administration.
Download full-text PDF |
Source |
---|
Front Biosci (Landmark Ed)
January 2025
Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131 Naples, Italy.
Background: Thyroid Hormones (THs) critically impact human cancer. Although endowed with both tumor-promoting and inhibiting effects in different cancer types, excess of THs has been linked to enhanced tumor growth and progression. Breast cancer depends on the interaction between bulk tumor cells and the surrounding microenvironment in which mesenchymal stem cells (MSCs) exert powerful pro-tumorigenic activities.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
Department of Biomedical Sciences, Grand Valley State University, Allendale, MI 49401, USA.
Background: Diabetes mellitus is associated with morphological and functional impairment of the heart primarily due to lipid toxicity caused by increased fatty acid metabolism. Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) have been implicated in the metabolism of fatty acids in the liver and skeletal muscles. However, their role in the heart in diabetes remains unclear.
View Article and Find Full Text PDFNutrients
January 2025
Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan.
: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. : In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.
View Article and Find Full Text PDFNutrients
January 2025
Department of Food Science and Nutrition, Dankook University, Cheonan 31116, Republic of Korea.
Background/objectives: Obesity is a key factor in metabolic syndrome (MetS) development. Consumption of a high-fat diet (HFD) accelerates the onset of obesity and associated metabolic complications. (PB) has been traditionally utilized in Korean medicine for its antioxidant, anti-diabetic, anticancer, and hepatoprotective effects.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Instituto Politécnico Nacional, Centro de Nanociencias y Micro y Nanotecnologías, Unidad Profesional Adolfo López Mateos, Av. Luis Enrique Erro S/N, Colonia Zacatenco, Mexico City 07738, Mexico.
Link & Otto, an endemic plant of Mexico, is widely distributed in the central area of the country, mainly in the states of Tlaxcala, Puebla, and the State of Mexico. Ethnobotanical studies in different communities of these states have demonstrated that it is primarily used to treat diabetes and mental illnesses, such as "los nervios" (nerves) and "el ansia" (anxiety); these terms are used in traditional medicine, but it is accepted that they refer to anxiety disorders. This study aimed to validate the traditional use of aerial parts of Link & Otto in treating these illnesses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!