Protein kinases are critical therapeutic targets. Pim kinases are implicated in several leukaemias and cancers. Here, we exploit a protein nanopore sensor for Pim kinases that bears a pseudosubstrate peptide attached by an enhanced engineering approach. Analyte binding to the sensor peptide is measured through observation of the modulation of ionic current through a single nanopore. We observed synergistic binding of MgATP and kinase to the sensor, which was used to develop a superior method to evaluate Pim kinase inhibitors featuring label-free determination of inhibition constants. The procedure circumvents many sources of bias or false-positives inherent in current assays. For example, we identified a potent inhibitor missed by differential scanning fluorimetry. The approach is also amenable to implementation on high throughput chips.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201503141 | DOI Listing |
J Thromb Haemost
January 2025
Systems Pharmacology and Translational Therapeutics Laboratory, at the Center for Advanced Studies and Technology (CAST), and Department of Neuroscience, Imaging and Clinical Science, "G. d'Annunzio" University Medical School, Chieti, Italy.
J Thromb Haemost
January 2025
Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, United Kingdom. Electronic address:
Background: The thromboxane A2 receptor (TPαR) plays an important role in the amplification of platelet responses during thrombosis. Receptor activity is regulated by internalization and receptor desensitization. The mechanism by which constitutive surface expression of the TPαR is regulated is unknown.
View Article and Find Full Text PDFNat Commun
January 2025
Université de Rennes 1, INSERM, Établissement Français du Sang de Bretagne, UMR_S1236, F-35043, Rennes, France.
Our study explores the complex dynamics of the integrated stress response (ISR) axis, highlighting PIM2 kinase's critical role and its interaction with the BCL2 protein family, uncovering key mechanisms of cell survival and tumor progression. Elevated PIM2 expression, a marker of various cancers, often correlates with disease aggressiveness. Using a model of normal and malignant plasma cells, we show that inhibiting PIM2 kinase inhibits phosphorylated BAD production and activates ISR-mediated NOXA expression.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, China.
Cell Biol Toxicol
December 2024
Department of Urology, Jinjiang Municipal Hospital, Luoshan Section, No. 16 Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China.
RBM family proteins plays the critical role in the progression of numerous tumors. However, whether RBM family proteins involved in prostate cancer (PCa) progression is remain elucidated. In our study, an RNAi screen containing shRNA library targeting 54 members of the RBM family was applied to identify the critical RBM proteins involved in prostate cancer progression under docetaxel treatment, and RBM19 was selected.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!