Accuracy of a Digital Impression System Based on Active Triangulation Technology With Blue Light for Implants: Effect of Clinically Relevant Parameters.

Implant Dent

*Research Fellow, Department of Buccofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain. †Professor and Head, Dental Material Unit, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, Center for Dental and Oral Medicine, University of Zurich, Zurich, Switzerland. ‡Associate Professor, Department of Buccofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain. ¶Professor and Chair, Department of Buccofacial Prosthesis, Faculty of Odontology, Complutense University of Madrid, Madrid, Spain.

Published: October 2015

Purpose: To evaluate the accuracy of a digital impression system considering clinical parameters.

Materials And Methods: A master model with 6 implants (27, 25, 22, 12, 15, and 17) was fitted with polyether ether ketone scan bodies. Implant no. 25 was placed with 30° mesial angulation and no. 15 with 30° distal angulation in relation to the vertical plane (y axis). Implant no. 22 was placed at 2 mm and no. 12 placed 4 mm below the gingiva. Experienced (n = 2) and inexperienced (n = 2) operators performed the scanning (CEREC system). Measurements involved 5 distances (27-25, 27-22, 27-12, 27-15, 27-17). Measurements with coordinated measuring machine of the master model acted as the true values.

Results: The experience of the operator affected the accuracy. Operator 3 (inexperienced) performed better than the rest. Angulation and implant depth did not affect the accuracy results. The position of the camera affected the accuracy of the system. The first scanned quadrant had significantly smaller error, -17 ± 26.3 μm, than the second quadrant, -116 ± 103 μm.

Conclusions: Digital impressions with CEREC Bluecam system can be a feasible alternative for challenging cases where angulation and depth of the implants are present. The accuracy of the CEREC system for the first scanned quadrant is high, and it decreases when completing a full arch.

Download full-text PDF

Source
http://dx.doi.org/10.1097/ID.0000000000000283DOI Listing

Publication Analysis

Top Keywords

accuracy digital
8
digital impression
8
impression system
8
master model
8
cerec system
8
system scanned
8
scanned quadrant
8
accuracy
6
system
6
system based
4

Similar Publications

Imaging Findings, Complications, and Mimics after Common and Advanced Dental Procedures.

Radiographics

February 2025

From the Department of Radiology, Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan (K.I., K.O., T.K.); Department of Diagnostic Radiology, National Cancer Center Hospital East, Chiba, Japan (H.K.); Department of Radiology, VA Boston Health Care System, Boston, Mass (V.C.A.A.); and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Mass (O.S.).

Various new dental treatment methods have been introduced in dental clinics, and many new materials have been used in recent years for dental treatments. Dentistry is divided into several specialties, each offering unique treatments, such as endodontics, implantology, oral surgery, and orthodontics. CT and MR images after dental treatment reveal a variety of hard- and soft-tissue changes and dental materials, which often cause image artifacts.

View Article and Find Full Text PDF

Who is a candidate at the initial presentation? Prediction of positive lateral lymph node and survival after dissection.

Tech Coloproctol

January 2025

Department of Colorectal Surgery, College of Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, 222 Banpodearo, Seochogu, Seoul, 06591, Korea.

Metastatic lateral pelvic lymph node (LPN) in rectal cancer has a significant clinical impact on the prognosis and treatment strategies. But there are still debates regarding prediction of lateral pelvic lymph node metastasis and its oncological impact. This review explores the evidence for predicting lateral pelvic lymph node metastasis and survival in locally advanced rectal cancer.

View Article and Find Full Text PDF

The biopharmaceutical industry is shifting toward employing digital analytical tools for improved understanding of systems biology data and production of quality products. The implementation of these technologies can streamline the manufacturing process by enabling faster responses, reducing manual measurements, and building continuous and automated capabilities. This study discusses the use of soft sensor models for prediction of viability and viable cell density (VCD) in CHO cell culture processes by using in-line optical density and permittivity sensors.

View Article and Find Full Text PDF

A Contracted Channel Droplet Reinjection Chip-Based Simple Integrated ddpcr System for SARS-CoV-2 and H1N1 Detection.

Anal Chem

January 2025

CAS Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China.

Droplet microfluidics is a powerful method for digital droplet polymerase chain reaction (ddPCR) applications. However, precise droplet control, bulky peripherals, and multistep operation usually required in droplet detection process hinder the broad application of ddPCR. Here, a contracted channel droplet reinjection chip is presented, where droplets can be self-separated and detected one by one at intervals.

View Article and Find Full Text PDF

Molecular electronics exhibiting resistive-switching memory features hold great promise for the next generation of digital technology. In this work, electrosynthesis of ruthenium polypyridyl nanoscale oligomeric films is demonstrated on an indium tin oxide (ITO) electrode followed by an ITO top contact deposition yielding large-scale (junction area = 0.7 × 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!