Mechanisms Involved in the Formation of Biocompatible Lipid Polymeric Hollow Patchy Particles.

Langmuir

†Bioengineering Department, ‡Krasnow Institute for Advanced Study, §Department of Chemistry and Biochemistry, and ∥Center for Computational Fluid Dynamics, College of Sciences, George Mason University, Fairfax, Virginia 22030, United States.

Published: June 2015

Patchy polymeric particles have anisotropic surface domains that can be remarkably useful in diverse medical and industrial fields because of their ability to simultaneously present two different surface chemistries on the same construct. In this article, we report the mechanisms involved in the formation of novel lipid-polymeric hollow patchy particles during their synthesis. By cross-sectioning the patchy particles, we found that a phase segregation phenomenon occurs between the core, shell, and patch. Importantly, we found that the shear stress that the polymer blend undergoes during the particle synthesis is the most important parameter for the formation of these patchy particles. In addition, we found that the interplay of solvent-solvent, polymer-solvent, and polymer-polymer-solvent interactions generates particles with different surface morphologies. Understanding the mechanisms involved in the formation of patchy particles allows us to have a better control on their physicochemical properties. Therefore, these fundamental studies are critical to achieve batch control and scalability, which are essential aspects that must be addressed in any type of particle synthesis to be safely used in medicine.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5b01551DOI Listing

Publication Analysis

Top Keywords

patchy particles
20
mechanisms involved
12
involved formation
12
hollow patchy
8
particle synthesis
8
formation patchy
8
particles
7
patchy
6
formation
4
formation biocompatible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!