Background: Identification of tumour antigens is crucial for the development of vaccination strategies against hepatocellular carcinoma (HCC). Most studies come from eastern-Asia, where hepatitis-B is the main cause of HCC. However, tumour antigen expression is poorly studied in low-endemic, western areas where the aetiology of HCC differs.
Methods: We constructed tissue microarrays from resected HCC tissue of 133 patients. Expression of a comprehensive panel of cancer-testis (MAGE-A1, MAGE-A3/4, MAGE-A10, MAGE-C1, MAGE-C2, NY-ESO-1, SSX-2, sperm protein 17), onco-fetal (AFP, Glypican-3) and overexpressed tumour antigens (Annexin-A2, Wilms tumor-1, Survivin, Midkine, MUC-1) was determined by immunohistochemistry.
Results: A higher prevalence of MAGE antigens was observed in patients with hepatitis-B. Patients with expression of more tumour antigens in general had better HCC-specific survival (P=0.022). The four tumour antigens with high expression in HCC and no, or weak, expression in surrounding tumour-free-liver tissue, were Annexin-A2, GPC-3, MAGE-C1 and MAGE-C2, expressed in 90, 39, 17 and 20% of HCCs, respectively. Ninety-five percent of HCCs expressed at least one of these four tumour antigens. Interestingly, GPC-3 was associated with SALL-4 expression (P=0.001), an oncofetal transcription factor highly expressed in embryonal stem cells. SALL-4 and GPC-3 expression levels were correlated with vascular invasion, poor differentiation and higher AFP levels before surgery. Moreover, patients who co-expressed higher levels of both GPC-3 and SALL-4 had worse HCC-specific survival (P=0.018).
Conclusions: We describe a panel of four tumour antigens with excellent coverage and good tumour specificity in a western area, low-endemic for hepatitis-B. The association between GPC-3 and SALL-4 is a novel finding and suggests that GPC-3 targeting may specifically attack the tumour stem-cell compartment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4580401 | PMC |
http://dx.doi.org/10.1038/bjc.2015.92 | DOI Listing |
Nano Lett
January 2025
Department of Physics, Shahid Beheshti University, Tehran 1635649771, Iran.
We present a method for conjugating antigens to gold nanoparticles (GNPs) during their synthesis via gas plasma, eliminating the need for chemical linkers and significantly speeding up the process (taking only 15 min). This fast, linker-free method produces biocompatible and stable GNPs, with potential for immunotherapy applications, such as antigen and antibody conjugation and drug delivery. We demonstrate the conjugation of the antigen Nestin (NES), a tumor marker, to GNPs using two approaches.
View Article and Find Full Text PDFUnlabelled: To overcome the paucity of known tumor-specific surface antigens in pediatric high-grade glioma (pHGG), we contrasted splicing patterns in pHGGs and normal brain samples. Among alternative splicing events affecting extracellular protein domains, the most pervasive alteration was the skipping of ≤30 nucleotide-long microexons. Several of these skipped microexons mapped to L1-IgCAM family members, such as .
View Article and Find Full Text PDFBioact Mater
April 2025
School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China.
Peptide vaccines based on tumor antigens face the challenges of rapid clearance of peptides, low immunogenicity, and immune suppressive tumor microenvironment. However, the traditional solution mainly uses exogenous substances as adjuvants or carriers to enhance innate immune responses, but excessive inflammation can damage adaptive immunity. In the current study, we propose a straightforward novel nanovaccine strategy by employing homologous human ferritin light chain for minimized innate immunity and dendritic cell (DC) targeting, the cationic KALA peptide for enhanced cellular uptake, and suppressor of cytokine signaling 1 (SOCS1) siRNA for modulating DC activity.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Cancer Immunotherapy and Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
Chimeric Antigen Receptor (CAR)-T cell therapy has revolutionized the treatment of CD19-positive B-cell malignancies. However, the field is rapidly evolving to target other antigens, such as podocalyxin (PODXL), a transmembrane protein implicated in tumor progression and poor prognosis in various cancers. This study explores the potential of PODXL-targeted CAR-T cells, utilizing a cancer-specific monoclonal antibody (CasMab) technique to enhance the specificity and safety of CAR-T cell therapy.
View Article and Find Full Text PDFBiochemistry (Mosc)
December 2024
Medicinal Chemistry Center, Togliatti State University, Togliatti, 445020, Russia.
Human carbonic anhydrase IX (CAIX) plays a key role in maintaining pH homeostasis of malignant neoplasms, thus creating a favorable microenvironment for the growth, invasion, and metastasis of tumor cells. Recent studies have established that inhibition of CAIX expressed on the surface of tumor cells significantly increases the efficacy of classical chemotherapeutic agents and makes it possible to suppress the resistance of tumor cells to chemotherapy, as well as to increase their sensitivity to drugs (in particular, to reduce the required dose of cytostatic agents). In this work, we studied the ability of new CAIX inhibitors based on substituted 1,2,4-oxadiazole-containing primary aromatic sulfonamides, to potentiate the cytostatic effect of gefitinib (selective inhibitor of epidermal growth factor receptor tyrosine kinase domain) under hypoxic conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!