A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrochemical Insights on the Hydrophobicity of Cellulose Substrates Imparted by Enzymatically Oxidized Gallates with Increasing Alkyl Chain Length. | LitMetric

In this work, we studied the influence of the alkyl chain length in enzymatically oxidized gallates on the development of hydrophobicity on paper-based materials, and further correlated the obtained effect to the redox mechanism of the enzymatic treatment. Laccase (Lac) enzyme was used to oxidize various members of the gallate homologous series in the presence or not of lignosulfonates (SL) to produce several functionalization solutions (FS), which were subsequently applied to cellulosic substrates. The hydrophobicity of the substrates was then assessed by means of water drop test (WDT) and contact angle (WCA) measurements. Hydrophobicity peaked reaching WDT and WCA values around 5000 s and 130°, respectively, and then decreased with increasing length of the hydrocarbon chain of gallate. Cyclic voltrammetry (CV) was used to study the effect of SL on the redox reactions of several gallates. The intensity of the anodic peak in their voltammograms decreased increasing the chain length of the gallate. The electrochemical behavior of lauryl gallate (LG) differed from that of other gallates. The fact that the voltammetric curves for SL and LG intersected at a potential of 478 mV indicates an enhancing effect of SL on LG oxidation at high potentials (above 478 mV).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b01904DOI Listing

Publication Analysis

Top Keywords

chain length
12
enzymatically oxidized
8
oxidized gallates
8
alkyl chain
8
decreased increasing
8
electrochemical insights
4
hydrophobicity
4
insights hydrophobicity
4
hydrophobicity cellulose
4
cellulose substrates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!